

Maths Calculation Policy
 Year 5 and Year 6

The following pages show our school's progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the concrete, pictorial and abstract approach throughout our school helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods.

National Curriculum	Year 5	Year 6
Addition	Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction). Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.	Solve problems involving addition, subtraction, multiplication and division.
Subtraction	Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction). Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.	Solve problems involving addition, subtraction, multiplication and division.
Multiplication	Multiply numbers up to 4 digits by a 1 or 2 digit number using a formal written method, including long multiplication for 2 digit numbers Solve problems involving multiplication and division including using knowledge of factors and multiples, squares and cubes Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign Solve problems involving multiplication and division including scaling by simple fractions and problems involving simple rates	Multiply multi-digit numbers up to 4 digits by a 2 digit whole number using the formal written method of long multiplication. Solve problems involving addition, subtraction, multiplication and division.
Division	Divide numbers up to 4 digits by a I digit number using the formal written method of short division and interpret remainders appropriately for the context las remainders, as fractions, as decimals or by rounding, e.g. $98 \div 4==24 r 2=24 \square=24.5 \approx$ 25).	Divide numbers up to 4 digits by a 2 digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate to the context. Divide numbers up to 4 digits by a 2 digit number using the formal written method of short division where appropriate, interpreting remainders according to the context.

	Solve problems involving multiplication and division including using knowledge of factors and multiples, squares and cubes. Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign. Solve problems involving multiplication and division including scaling by simple fractions and problems involving simple rates.	Solvelving addition, subtraction, multiplication and division.

Key Language	Year 5	
Addition	Subject specific: put together, add, altogether, double, total, more than, equals, plus, make, commutative, inverse, sum, partition, near double, score, increase Instructional vocabulary: put, place arrange, rearrange change, change over split, separate	Subject specific: put together, add, altogether, double, total, more than, equals, plus, make, commutative, inverse, sum, partition, near double, score, increase Instructional vocabulary: put, place arrange, rearrange change, change over adjusting, adjust split, separate carry on, continue, repeat what comes next? predict describe the pattern, describe the rule, find, find all, find different investigate
Subtraction	Subject specific: subtract, takeaway, distance between, difference between, less than, minus, leave, fewer, left over, equals, tens boundary, partition, rearrange, inverse, hundreds boundary, exchange, carried digits, decrease, units boundary, tenths boundary Instructional vocabulary: put, place arrange, rearrange change, change over adjusting, adjust split, separate	Subject specific: subtract, takeaway, distance between, difference between, less than, minus, leave, fewer, left over, equals, tens boundary, partition, rearrange, inverse, hundreds boundary, exchange, carried digits, decrease, units boundary, tenths boundary Instructional vocabulary: put, place arrange, rearrange change, change over adjusting, adjust split, separate carry on, continue, repeat what comes next? predict describe the pattern, describe the rule, find, find all, find different investigate
Multiplication	Subject specific:	

double, equal groups, array, lots of, odd, even, repeated addition, inverse, commutative, groups of, multiply, multiplied by, multiple of, twice, row, column, tables, factor, related fact, scale, product, factor pair, known fact, derived fact, common factor, prime number, prime factor, composite number, square number, cube number, scale, rate Instructional vocabulary:
carry on, continue, repeat what comes next? predict describe the pattern, describe the rule, find, find all, find different investigate

Subject specific:

share, equal groups, array, pairs, divide, divided by, divided into, left over, odd, even, repeated addition, remainder, dividend, divisor, divided

into remainder factor, quotient, divisible by inverse

Instructional vocabulary

calculate, work out, solve, investigate question, answer, check same, different missing number/s number facts, number pairs, number bonds greatest value, least value
double, equal groups, array, lots of, odd, even, repeated addition, inverse, commutative, groups of, multiply, multiplied by, multiple of, twice, row, column, tables, factor, related fact, scale, product, factor pair, known fact, derived fact, common factor, prime number, prime factor, composite number, square number, cube number, scale, rate, common multiple Instructional vocabulary:
carry on, continue, repeat what comes next? predict describe the pattern, describe the rule, find, find all, find different investigate
Subject specific:
share, equal groups, array, pairs, divide, divided by, divided into, left over, odd, even, repeated addition, remainder, dividend, divisor, divided into remainder factor, quotient, divisible by inverse, remainders as fractions or decimals

Instructional vocabulary:

calculate, work out, solve, investigate question, answer, check
same, different missing number/s number facts, number pairs, number bonds greatest value, least value

KEYSTAGE 2

In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.

Addition and Subtraction

Children build on their column methods to add and subtract numbers with up to seven digits, and they adapt the methods to calculate efficiently and effectively with decimals, ensuring understanding of place value at every stage.
Children compare and contrast methods, and they select mental methods or jottings where appropriate and where these are more likely to be efficient or accurate when compared with formal column methods.
Bar models are used to represent the calculations required to solve problems and may indicate where efficient methods can be chosen.

Multiplication and Division

Building on their understanding, children develop methods to multiply up to 4-digit numbers by single-digit and 2-digit numbers. Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10,100 and 1,000 . Written division methods are introduced and adapted for division by single-digit and 2digit numbers and are understood alongside the area model and place value. In Year 6, children develop a secure understanding of how division is related to fractions.
Multiplication and division of decimals are also introduced and refined in Year 6

Fractions

Children find fractions of amounts, multiply a fraction by a whole number and by another fraction, divide a fraction by a whole number, and add and subtract fractions with different denominators. Children become more confident working with improper fractions and mixed numbers and can calculate with them.
Understanding of decimals with up to 3 decimal places is built through place value and as fractions, and children calculate with decimals in the context of measure as well as in pure arithmetic.
Children develop an understanding of percentages in relation to hundredths, and they understand how to work with common

			 Use addition to check subtractions. I calculated 7,546-2,355=5,191. I will check using the inverse.
Subtracting decimals	Explore complements to a whole number by working in the context of length.	Use a place value grid to represent the stages of column subtraction, including exchanges where required. $5 \cdot 74-2 \cdot 25=?$	Use column subtraction, with an understanding of place value, including subtracting numbers with different numbers of decimal places. $3.921-3.75=?$

[^0]$$
1-0.49=?
$$

Exchange I tenth for 10 hundredths.

$\begin{array}{r}0 \cdot \text { Tth Hth } \\ \hline 5 \cdot 67 \frac{1}{4} \\ -2 \cdot 2 \quad 5 \\ \hline \cdot \\ \hline\end{array}$

$$
-3 \cdot 750
$$

.

Now subtract the 5 hundredths.

Now subtract the 2 tenths, then the 2 ones.

14 | Page

Multiplying by 10,100 and 1,000	Use place value equipment to multiply by 10,100 and I,OOO by unitising.	Understand the effect of repeated multiplication by 10 .	Understand how exchange relates to the digits when multiplying by 10,100 and I,000.
	$4 \times 1=4 \text { ones }=4$		H T 0
	$4 \times 10=4 \text { tens }=40$		
	$=400$		$\begin{aligned} & 17 \times 10=170 \\ & 17 \times 100=17 \times 10 \times 10=1,700 \\ & 17 \times 1,000=17 \times 10 \times 10 \times 10= \\ & 17,000 \end{aligned}$
Multiplying by multiples of 10,100 and 1,000	Use place value equipment to explore multiplying by unitising.	Use place value equipment to represent how to multiply by multiples of 10,100 and 1,000 .	Use known facts and unitising to multiply. $\begin{aligned} & 5 \times 4=20 \\ & 5 \times 40=200 \\ & 5 \times 400=2,000 \\ & 5 \times 4,000-20,000 \\ & 5,000 \times 4=20,000 \end{aligned}$

$$
17 \mid P a g e
$$

Progress to include examples that require multiple exchanges as understanding, confidence and fluency build.
$1,274 \times 32=?$
First multiply 1,274 by 2.
1274
\times
$\begin{array}{r}32 \\ \hline 25,48\end{array}$
$1,274 \times 2$
\qquad

Then multiply 1,274 by 30
$\begin{array}{ll}1 & 24\end{array}$
$\times \quad 32$
$\begin{array}{lllll} & 2 & 5,4 & 8 & 1,274 \times 2 \\ 3 & 8,2,2 & 0 & 1,274 \times 30\end{array}$

Finally, find the total.

$$
21 \mid P a g e
$$

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Year } 5 \\
\text { Division }\end{array} & & & \\
\hline \begin{array}{l}\text { Understanding } \\
\text { factors and } \\
\text { prime numbers }\end{array} & \begin{array}{l}\text { Use equipment to explore the factors of a given } \\
\text { number. }\end{array} & \begin{array}{l}\text { Understand that prime numbers are numbers } \\
\text { with exactly two factors. }\end{array} & \begin{array}{l}\text { Understand how to recognise prime and } \\
\text { composite numbers. }\end{array}
$$

I know that 3 / is a prime number because

it can be divided by only / and itself\end{array}\right]\)| without leaving a remainder. |
| :--- |

Understanding inverse operations and the link with multiplication, grouping and sharing	Use equipment to group and share and to explore the calculations that are present. I have 28 counters. 1 made 7 groups of 4. There are 28 in total. I have 28 in total. I shared them equally into 7 groups. There are 4 in each group. I have 28 in total. I made groups of 4 . There are 7 equal groups.	Represent multiplicative relationships and explore the families of division facts. $\begin{aligned} & 60 \div 4=15 \\ & 60 \div 15=4 \end{aligned}$	Represent the different multiplicative relationships to solve problems requiring inverse operations. $12 \div 3=$ \square $12 \div \square=3$ \square $\times 3=12$ \square $\div 3=12$ Understand missing number problems for division calculations and know how to solve them using inverse operations. $\begin{aligned} & 22 \div ?=2 \\ & 22 \div 2=? \\ & ? \div 2=22 \\ & ? \div 22=2 \end{aligned}$
Dividing whole numbers by 10 , 100 and 1,000	Use place value equipment to support unitising for division. $4,000 \div 1,000$	Use a bar model to support dividing by unitising. $380 \div 10=38$	Understand how and why the digits change on a place value grid when dividing by 10,100 or 1,000 .

$3,000 \div 5=600$
$3,000 \div 50=60$
$3,000 \div 500=6$

		12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$	
Dividing up to four digits by a single digit using short division	Explore grouping using place value equipment. $268 \div 2=?$ There is I group of 2 hundreds. There are 3 groups of 2 tens. There are 4 groups of 2 ones. $264 \div 2=134$	Use place value equipment on a place value grid alongside short division. The model uses grouping. A sharing model can also be used, although the model would need adapting. Lay out the problem as a short division.	Use short division for up to 4-digit numbers divided by a single digit. $\begin{aligned} & \begin{array}{rrrr} 0 & 5 & 5 & 6 \\ 7 & 3^{3} 8 & { }^{3} q & { }^{4} 2 \\ 3,892 & \div 7 & & \\ & & & \end{array} \\ & \end{aligned}$ Use multiplication to check. $\begin{aligned} & 556 \times 7=? \\ & 6 \times 7=42 \\ & 50 \times 7=350 \\ & 500 \times 7=3500 \\ & 3,500+350+42=3,892 \end{aligned}$

Understanding remainders

Understand remainders using concrete versions of a problem．
80 cakes divided into trays of 6 ．
嘲期期

80 cakes in total．They make 13 groups of 6 ， with 2 remaining．

How many groups of 6 go into 8 tens？ There is I group of 6 tens．

There ore 2 tens remaining．

In problem solving contexts，represent divisions including remainders with a bar model．

$683=136 \times 5+3$ $683 \div 5=136 r 3$

Dividing decimals by 10, 100 and I,000	Understand division by 10 using exchange.
20 ones are 20 tenths.	
20 tenths divided by 10 is 2 tenths.	

Represent division using exchange on a place value grid.

Understand the movement of digits on a place value grid.

$0.85 \div 10=0.085$

$8.5 \div 100=0.085$

	Concrete							Pictorial					Abstract
Year 6 Addition													
Comparing and selecting efficient methods	Repr and meth	esent 7use this hods.		$\begin{aligned} & \text { ers } \\ & \text { thir } \end{aligned}$	a pla $g \text { an }$	val men	rid, 0	Discuss similarities and differences between methods, and choose efficient methods based on the specific calculation. Compare written and mental methods alongside place value representations.					Use column addition where mental methods are not efficient. Recognise common errors with column addition. Which method has been completed accurately? What mistake has been made?

			Column methods are also used for decimal additions where mental methods are not efficient.
Selecting mental methods for larger numbers where appropriate	Represent 7-digit numbers on a place value grid, and use this to support thinking and mental methods. $2,411,301+500,000=?$ This would be 5 more counters in the HTh place. So, the total is $2,911,301$. $2,411,301+500,000=2,911,301$	Use a bar model to support thinking in addition problems. I added 100 thousands then subtracted I thousand.	Use place value and unitising to support mental calculations with larger numbers. $\begin{aligned} & 195,000+6,000=? \\ & 195+5+1=201 \end{aligned}$ 195 thousands +6 thousands $=201$ thousands So, $195,000+6,000=201,000$

Understanding order of operations in calculations	Use equipment to model different interpretations of a calculation with more than one operation. Explore different results.

```
257 thousands + 100 thousands = 357
thousands
257,000 + 100,000 = 357,000
357,000-1,000 = 356,000
So,257,000 + 99,000 = 356,000
```

Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations
cab

This can be written as: $16 \times 4+16 \times 6$

Understand the correct order of operations in calculations without brackets.

Understand how brackets affect the order of operations in a calculation.
$4+6 \times 16$
$4+96=100$
$(4+6) \times 16$
$10 \times 16=160$

Year 6 Subtraction	Use counters on a place value grid to represent and selecting efficient methods			subtractions of larger numbers.	

Use column subtraction for decimal problems, including in the context of measure.

Th	H	T	O
2	6	7	9
-	5	3	4
2	1	4	5

measure. H	T	O	\cdot	Tth	Hth
3	0	9	\cdot	6	0
-2	0	6	\cdot	4	0
1	0	3	\cdot	2	0

$$
34 \mid P a g e
$$

		Use a bar model to represent calculations, including 'find the difference' with two bars as comparison.	
Subtracting mentally with larger numbers		Use a bar model to show how unitising can support mental calculations. $950,000-150,000$ That is 950 thousands - 150 thousands 950 150 800 So, the difference is 800 thousands. $950,000-150,000=800,000$	Subtract efficiently from powers of 10 $10,000-500=$?
Year 6 Multiplication			

$$
36 \mid P a g e
$$

			thod I 1,000 20,000 1,000	200 4,000 200	30 600 30	 100 5	
Using knowledge of factors and partitions to compare methods for multiplications	Use equipment to understand square numbers and cube numbers. $5 \times 5=52=25$		pare meth del. Under produce the urately.	ods visua and tha same	using ultiple ver if	area proaches pleted	Use a known fact to generate families of related facts.

	$5 \times 5 \times 5=53=25 \times 5=125$	Represent and compare methods using a bar model.	Use factors to calculate efficiently 15×16 $=3 \times 5 \times 2 \times 8$ $=3 \times 8 \times 2 \times 5$ $=24 \times 10$ $=240$
Multiplying by 10, 100 and I,000	Use place value equipment to explore exchange in decimal multiplication	Understand how the exchange affects decimal numbers on a place value grid.	Use knowledge of multiplying by 10,100 and I,000 to multiply by multiples of 10 , 100 and 1,000 . $\begin{aligned} & 8 \times 100=800 \\ & 8 \times 300=800 \times 3 \\ & =2,400 \\ & 2.5 \times 10=25 \\ & 2.5 \times 20=2.5 \times 10 \times 2 \\ & =50 \end{aligned}$

Multiplying
decimals

Explore decimal multiplications using place value equipment and in the context of measures.

3 groups of 4 tenths is 12 tenths. 4 groups of 3 tenths is 12 tenths.

$4 \times / \mathrm{cm}=4 \mathrm{~cm}$
$4 \times 0.3 \mathrm{~cm}=1.2 \mathrm{~cm}$
$4 \times 13=4+12=52 \mathrm{~cm}$

Represent calculations on a place value grid.
$3 \times 3=9$
$3 \times 0.3=0.9$

Understand the link between multiplying decimals and repeated addition.

Use known facts to multiply decimals.
$4 \times 3=12$
$4 \times 0.3=1.2$
$4 \times 0.03=0.12$
$20 \times 5=100$
$20 \times 0.5=10$
$20 \times 0.05=1$
Find families of facts from a known multiplication.
1 know that $18 \times 4=72$.
This can help me work out:
$18 \times 4=$?
$18 \times 04=$?
$180 \times 0.4=?$
$18 \times 0.04=$?
Use a place value grid to understand the effects of multiplying decimals.

Dividing by a 2-digit number using factors	Understand that division by factors can be used when dividing by a number that is not prime.	Use factors and repeated division. $1,260 \div 14=?$ 1,260 $\begin{aligned} & 1,260 \div 2=630 \\ & 630 \div 7=90 \\ & 1,260 \div 14=90 \end{aligned}$	Use factors and repeated division where appropriate.

Dividing by a 2-digit number using long division

182 divided into groups of 13 .
There are 14 groups.

44 | Page

P			

$$
\begin{aligned}
& \begin{array}{cc}
& 3 \\
21 & 7 \quad 9 \quad 8
\end{array} \\
& -\begin{array}{r}
630 \\
\hline 1 \\
\hline
\end{array} \\
& \begin{array}{r|rr}
& 3 & 8 \\
21 & 7 & 9 \\
\hline
\end{array} \\
& -\begin{array}{r}
630 \\
\hline 168
\end{array} \\
& -\begin{array}{r}
168 \\
\hline
\end{array}
\end{aligned}
$$

Divisions with a remainder explored in problem-solving contexts.

Dividing by IO, Use place value equipment to explore division as 100 and 1,000 exchange.

Exchange each 0.1 for ten 0.01 s .

Divide 20 counters by 10 .

02 is 2 tenths

2 tenths is equivalent to 20 hundredths. 20 hundredths divided by 10 is 2 hundredths.

Represent division to show the relationship with multiplication. Understand the effect of dividing by 10,100 and 1,000 on the digits on a place value grid.

$12 \times 10=12$
Understand how to divide using division by 10 , IOO and I,000.
$12 \div 20=?$

Use knowledge of factors to divide by multiples of 10,100 and 1,000 .

$40 \div 5=8$
$8 \div 10=0.8$
So, $40 \div 50=0.8$

Progression in Fractions UKS2

Objective 2: Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths

Express the following improper fractions as mixed numbers.
\square $\frac{41}{7}$

Express the following mixed numbers as improper fractions.

$$
\begin{array}{llll}
4 \frac{1}{8} & 6 \frac{4}{9} & 3 \frac{11}{12} & 8 \frac{2}{3}
\end{array}
$$

$$
49 \mid P a g e
$$

Objective 4: Add and subtract fractions with the same denominator and denominators that are multiples of the same number
adding to reach the whole number, then adding the remaining fraction

$$
7 \frac{2}{5}+\frac{4}{5}=8 \frac{1}{5} \quad 8 \frac{1}{5}-\frac{4}{5}=7 \frac{2}{5}
$$

Language focus

" 7 one-fifths plus 4 one-fifths is equal to 11 one-fifths."

$3 \frac{7}{8}-\frac{2}{8}=3 \frac{5}{8}$

Objective 5: Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams.

Objective 7: Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal.

| $\frac{1}{5}$ | $\frac{1}{5}$ | $\frac{1}{5}$ | $\frac{1}{5}$ | | $\frac{1}{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ |

$$
\frac{2}{5}>\frac{2}{6}
$$

$\frac{2}{5}=\frac{12}{30}$	
$\frac{2}{6}=\frac{10}{30}$	LCM of 5 and $6=30$

Without using a common denominator, put each set of fractions in order from smallest to largest.
a. $\begin{array}{lllllll}10 & \frac{7}{8} & \frac{5}{8} & \frac{3}{8} & \frac{8}{8} & \frac{4}{8} & \frac{2}{8}\end{array}$

Objective 3: Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions.

$2 \frac{1}{2}+\frac{3}{4}=$

$\frac{7}{10}+\frac{5}{10}+\frac{3}{10}$	$\frac{8}{9}+\frac{8}{9}-\frac{1}{9}$	$3 \frac{7}{10}+2 \frac{9}{10}$
$\frac{13}{8}+\frac{11}{8}$	$7 \frac{1}{6}-1 \frac{2}{6}$	$\frac{17}{3}-\frac{5}{3}$

$\frac{6}{7}+\frac{2}{3}=\frac{18}{21}+\frac{14}{21}$

Objective 4: Multiply simple pairs of proper fractions, writing the answer in its simplest form [for example, $1 / 2 \times 3 / 4=3 / 8$].

$$
\frac{1}{2} \times \frac{3}{4}=\frac{3}{8}
$$

$\frac{3}{5} \times \frac{1}{4}=\frac{3}{20}$

Objective 5: Divide proper fractions by whole numbers [for example, $6 / 8 \div 3=1 / 4$]

Dividing by 2 is
the same as
multiplying by $\frac{1}{2}$

Objective 6: Associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example, 3/8]

1.25

$\frac{1}{4}=\frac{23}{100}=0.25$

$$
28 \frac{4}{5}=28.8
$$

\square

Standard Written Method

$56 \mid P a g e$

Year 2	$\begin{aligned} & 59 \\ & 143+ \\ & \hline 102 \end{aligned}$	$\begin{aligned} & 673 \\ & 49 \\ & 24 \end{aligned}$	$8 \times 5=40$	$35 \div 5=7$
Year 3	$\begin{aligned} & 523 \\ & 393+ \\ & 916 \end{aligned}$	$\begin{aligned} & 4^{4} 23 \\ & \underline{393-} \\ & 130 \end{aligned}$	$\begin{aligned} & 59 \\ & -6 x \\ & 54(6 \times 9) \\ & \underline{300}(6 \times 50) \\ & 354 \end{aligned}$	$\begin{array}{r} 4 \\ 8 \longdiv { 3 2 } \end{array}$
Year 4	$\begin{aligned} & 1,312 \\ & \underline{3,094+} \\ & 4,406 \end{aligned}$	$\begin{aligned} & 6,273 \\ & 1,093- \\ & 5,180 \end{aligned}$	$\begin{aligned} & 159 \\ & \frac{16 \times 954}{1,590+} \\ & \frac{2,544}{} \end{aligned}$	$\begin{array}{r} 135 \\ 7 \longdiv { 9 4 5 } \end{array}$

Year 5	$\begin{aligned} & 13,123 \\ & 30,943+ \\ & 44,066 \end{aligned}$	$\begin{aligned} & 6^{1} 2,743 \\ & 10,923- \\ & 51,820 \end{aligned}$	2259 $6 x$ 1200 1,200 13,554 	$6 \overleftarrow{1679}^{279} \text { r } 5$
Year 6	$\begin{aligned} & 613,123 \\ & 1310,943+ \\ & 744,066 \end{aligned}$	$\begin{aligned} & \text { 6112,1743 } \\ & 100,923-511,820 \end{aligned}$	$\begin{array}{r} 2259 \\ 46 \times 13,554 \\ 901,360+ \\ 103,914 \end{array}$	

[^0]: $12 \mid$ Page

