

Calculation Policy Year 3 and Year 4

Maths Calculation Policy Year 3 and Year 4

The following pages show our school's progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the concrete, pictorial and abstract approach throughout our school helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods.

I Page

Mathematics Intent

At Teagues Bridge, our intention is **ambitious**. We aim to create strong mathematicians who have the necessary skills and understanding to tackle mathematical challenges in varying contexts, including the ability to reason and apply their knowledge to solving problems. This should mean that children are able to apply their knowledge to everyday life and can **aspire** to achieve anything that they want. We want our pupils to have strong mental manipulation and to use written strategies when appropriate.

Our philosophy for mathematics is replacing an idea that maths is lots of rules and numbers with a study of patterns and connected ideas. In early years they will build a foundation of number understanding and representation through mainly concrete and pictorial representations. The approach will be supported by in depth questioning, throughout the school to develop mastery.

Use of CPA is encouraged to ensure the curriculum is accessible for all children and that they all have the **opportunity** and are able to demonstrate their understanding in a variety of ways. This will enable them to have a good understanding of maths and not just the ability to follow a procedure. We want to **empower** them to want to ask questions and want to find the answers.

Aims: The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and nonroutine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programmes of study are, by necessity, organised into apparently distinct domains, but pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects.

The expectation is that the majority of pupils will move through the programmes of study at broadly the same pace. However, decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through

being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on.

Our lessons are structured to enable all children to achieve and have an **opportunity** to make progress with their learning. Each lesson begins with a **CLIC maths** activity, where they have chance to develop their mental strategies, secure number facts and number manipulation. They then **develop** their mathematical fluency with the teacher modelling and explaining before they have a go themselves. Children then have a **reasoning/ problem solving** activity which is a variation of the previous work to demonstrate they have mastered the objective. Children who are ready can then **challenge** themselves with a task that requires applying the learning to a greater depth. We have our own programme of study which is supported with schemes like White Rose to support.

National	Year 3	Known Facts	Essential Knowledge	Year 4	Known facts	Essential Knowledge
Curriculum						
Addition	Add and subtract	Derive and use	Add single digit	Add and subtract	Derive and use	Fluency of 2 digit+ 2
	numbers with up	addition and	bridging through	numbers with up to	addition and	digit.
	to 3 digits, using	subtraction facts to	boundaries.	4 digits using the	subtraction facts (Partion second number
	formal written	100, e.g. 33 + 67	Partion second number	formal written	for multiples of 10)	to add.
	methods of	=100.	to add.	method of	to 1000, e.g.	Use near doubles to add.
	columnar addition		Use near doubles to	columnar addition	330+670=1000.	Add near multiples.
	and subtraction.		add.	and subtraction		Add multiples of 10, 100
			Partion and	where appropriate.		and 1000.
			recombine.	Solve addition and		Decimal pairs of 10 and
			Add multiples 10, 100.	subtraction two-step		Ι.
			Pairs of 100	problems in		Adjust both numbers
			(compliments of 100).	contexts, deciding		before adding.
			Add near multiples of	which operations		Partion and recombine.
			10 and 100 by	and methods to use		
			rounding and	and why.		
			adjusting			
Subtraction	Add and subtract	Derive and use	Subtract single digit	Add and subtract	Derive and use	Fluency of 2-digit – 2-
	numbers with up	addition and	bridging through	numbers with up to	addition and	digit.
	to 3 digits, using	subtraction facts to	boundaries.	4 digits using the	subtraction facts (for	Partion second number
	formal written	100, e.g.	Partion second number	formal written	multiples of 10), to	to subtract.
	methods of	33+67=100	to subtract.	method of	1000, e.g.	Difference between.
	columnar addition		Differences between.	columnar addition	330+670=1000	

	and subtraction.		Partion and	and subtraction		Subtract multiples of 10,
	Least significant		recombine.	where appropriate.		100 and 1000.
	digit is always		Subtract multiples of	Solve addition and		Decimal subtraction
	dealt with first to		10, 100.	subtraction two-step		from 10 or 1.
	establish if the		Pairs of 100	problems in		Subtract near multiples
	exchange is		(complements of 100).	contexts, deciding		by rounding and
	needed.		Subtract near	which operations		adjusting.
			multiples of 10 and	and methods to use		
			100 by rounding and	and why.		
			adjusting.			
Multiplication	Write and	Recall and use x and	Review 2x, 5x and 10x,	Multiply 2 digit	Recall and use x and	4x and 8x tables.
	calculate	÷ facts for the 3,	4x, 8x, 3x, бх.	and 3 digit	÷ for x tables up to	3x, 6x and 12x tables.
	mathematical	4 and 8x tables.	Double 2-digit	numbers by a l	12 x 12.	3x and 9x tables.
	statements for		numbers.	digit number using		10x bigger, 100x bigger.
	multiplication and			formal written		Double larger numbers
	division using the			layout. Solve		and decimals.
	multiplication			problems involving		IIx and 7x tables
	tables that they			multiplying and		
	know, including 2			adding.		
	digit numbers					
	times I digit					
	numbers					
	progressing to					
	formal written					
	methods.					

Division	Write and	Recall and use x and	Review division facts	Practise to become	Recall x and ÷ for x	Division facts (4x and
	calculate	÷ facts for the 3,	(2x, 5x and 10x	fluent in the	tables up to 12 x 12	8x tables).
	mathematical	4 and 8x tables.	tables).	formal written		Division facts (3x, 6x
	statements for		Division Facts (4x	method of short		and 12x tables).
	multiplication and		table).	division with exact		Division facts (3x and
	division using the		Division facts (8x	answers.		9x tables).
	multiplication		table).			<i>Test of divisibility</i> ~ Any
	tables that they		Test of divisibility ~			number with a digit sum
	know, including 2		KSI ~ 2, 5 and 10.			of a multiple of 3, will
	digit numbers		Halve 2-digit			divide equally by 3.
	times I digit		numbers.			KSI 2, 5, IO.
	numbers		Division facts (3x			IOx smaller.
	progressing to		table).			Halve larger numbers
	formal written		Division facts (6x			and decimals.
	methods.		table)			Division facts (IIx and
			Test of divisibility ~			7x tables).
			Any number with a			<i>Test of divisibility</i> ~ Any
			digit sum of a			number with a digit sum
			multiple of 3, will			of a multiple of 3 and
			divide equally by 3.			is even will divide
						equally by 6.

6 | Page

Key Language	Year 3	Year 4
Addition	Subject specific: put together, add, addition, altogether, double, total, more than, equals, plus, make, altogether, commutative, inverse, sum, partition, double, near double, one moew, two more one hundred more, hoe many more to make? How many more is? how much more is?score Instructional vocabulary: explain your method explain how you got your answer give an example of show how you show your working Estimate	Subject specific: put together, add, altogether, double, total, more than, equals, plus, make, commutative, inverse, sum, partition, near double, score, double, near double, how many more to make? increase Instructional vocabulary: calculate, work out, solve investigate, question answer check
Subtraction	Subject specific: subtract, subtraction, takeaway, distance between, difference between, less than, minus, leave, fewer, left over, how many fewer is? how much less is? difference between? half, halve, equals, tens boundary, partition, rearrange, inverse, hundreds boundary, exchange, carried digits Instructional vocabulary: explain your method explain how you got your answer give an example of show how you show your working	Subject specific: subtract, subtraction, takeaway, distance between, difference between, less than, minus, leave, fewer, left over, equals, tens boundary, partition, rearrange, inverse, hundreds boundary, exchange, carried digits, decrease Instructional vocabulary: calculate, work out, solve investigate, question answer check
Multiplication	Subject specific: double, equal groups, array, lots of, odd, even, commutative, repeated addition, inverse, groups of, multiply, multiplied by, multiple of, twice, row, column, repeated addition, array row, column double, halve share, share equally, one each, two each tables , factor , related fact , scale , product Instructional vocabulary: carry on, continue repeat what comes next? predict describe the pattern, describe the rule find, find all, find different, investigate choose, decide, collect	Subject specific: double, equal groups, array, lots of, odd, even, commutative, repeated addition, inverse, groups of, multiply, multiplied by, multiple of, twice, row, column, tables, factor, related fact, scale, product, repeated addition, array row, column double, halve, factor pair, known fact, derived fact Instructional vocabulary: carry on, continue, repeat what comes next? predict describe the pattern, describe the rule pattern, puzzle, calculate, calculation, mental calculation, method, jotting, answer right, correct, wrong what could we try next? how did you work it out? number sentence sign, operation, symbol, equation
Division	Subject specific:	Subject specific:

share, share equally, equal groups, array, pairs, divide, divided by, divided	share, share equally, one each, two each, three each, equal groups, group in pairs,
into, left over, odd, even, repeated addition, group in pairs, threes, ten equal	threes, ten equal groups, array, pairs, divide, divided by, divided into, left over, odd,
groups, remainder, dividend, divisor	even, repeated addition, remainder, dividend, divisor
Instructional vocabulary:	Instructional vocabulary:
calculate, work out, solve, investigate question, answer, check	calculate, work out, solve, investigate, question, answer, check

KEYSTAGE 2

In Years 3 and 4, children develop the basis of written methods by building their skills alongside a deep understanding of place value. They should use known addition/subtraction and multiplication/division facts to calculate efficiently and accurately, rather than relying on counting. Children use place value equipment to support their understanding, but not as a substitute for thinking.

Addition and Subtraction	Multiplication and Division	Fractions
In Year 3 especially, the column methods are built up	Children build a solid grounding in times-tables,	Children develop the key concept of equivalent fractions,
gradually. Children will develop their understanding of	understanding the multiplication and division facts in	and link this with multiplying and dividing the
how each stage of the calculation, including any	tandem. As such, they should be as confident knowing that	numerators and denominators, as well as exploring the
exchanges, relates to place value. The example	35 divided by 7 is 5 as knowing that 5 times 7 is 35.	visual concept through fractions of shapes. Children
calculations chosen to introduce the stages of each		learn how to find a fraction of an amount and develop
method may often be more suited to a mental method.	Children develop key skills to support multiplication methods:	this with the aid of a bar model and other
However, the examples and the progression of the steps	unitising, commutativity, and how to use partitioning	representations alongside.
have been chosen to help children develop their fluency in	effectively.	
the process, alongside a deep understanding of the		in Year 3, children develop an understanding of how to
concepts and the numbers involved, so that they can	Unitising allows children to use known facts to multiply and	add and subtract fractions with the same denominator
apply these skills accurately and efficiently to later	divide multiples of 10 and 100 efficiently. Commutativity	and find complements to the whole. This is developed
calculations. The class should be encouraged to compare	gives children flexibility in applying known facts to	alongside an understanding of fractions as numbers,
mental and written methods for specific calculations,	calculations and problem solving. An understanding of	including fractions greater than I. In Year 4, children
and children should be encouraged at every stage to	partitioning allows children to extend their skills to multiplying	begin to work with fractions greater than I.
make choices about which methods to apply.	and dividing 2- and 3-digit numbers by a single digit.	

	Children develop column methods to support multiplications in	Decimals are introduced, as tenths in Year 3 and then
In Year 4, the steps are shown without such fine detail,	these cases.	as hundredths in Year 4. Children develop an
although children should continue to build their	For successful division, children will need to make choices	understanding of decimals in terms of the relationship
understanding with a secure basis in place value. In	about how to partition. For example, to divide 423 by 3, it is	with fractions, with dividing by 10 and 100, and also
subtraction, children will need to develop their	effective to partition 423 into 300, 120 and 3, as these can	with place value.
understanding of exchange as they may need to exchange	be divided by 3 using known facts.	
across one or two columns.	Children will also need to understand the concept of	
By the end of Year 4, children should have developed	remainder, in terms of a given calculation and in terms of	
fluency in column methods alongside a deep	the context of the problem.	
understanding, which will allow them to progress		
confidently in upper Key Stage 2.		

9 | Page

	Concrete	Pictorial	Abstract
YEAR 3			
Addition			
Understanding 100s	Understand the cardinality of 100, and the link with 10 tens. Use cubes to place into groups of 10 tens. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unitise 100 and count in steps of 100.	Represent steps of 100 on a number line and a number track and count up to 1,000 and back to 0. 0 100 200 300 600 700 500 400 200 0
place value to	On use 1005, 105 and 15 to build 3-algit numbers.	Use a place value grid to support the structure of numbers to 1,000. Place value counters are used alongside other equipment. Children should understand how	represent the parts of numbers to 1,000 using a part-whole model. 215 200 10 5 $215 = 200 + 10 + 5$ Recognise numbers to 1,000 represented on a number line, including those between intervals.
	<u> </u>		10 P a g e

	1				
3-digit number + Is with exchange	214 + 4 = ? Now there are 4 + 4 ones in total. 4 + 4 = 8 214 + 4 = 218 Understand that when the 1s sum to 10 or more, this requires an exchange of 10 ones for 1 ten. Children should explore this using unitised objects or physical apparatus.	245 + 4 5 + 4 = 9 245 + 4 = 240 Exchange 10 one Use a place valu understanding.	7 Is for I te where ie grid to suppor	e needed. rt the	Use number bonds to add the Is and understand that this is more efficient and less prone to error. 245 + 4 = ? I will add the Is. 5 + 4 = 9 So, $245 + 4 = 249$ Understand how to bridge by partioning to the Is to make the next IO.
		H	Т	0	
					(5) (2)
		Н		0	
				00000	135 140 142

		Н	Т	0	
		135 + / = 142			
3-digit number	Calculate mentally by forming the number	Calculate mente	ally by forming	the number	Calculate mentally by forming the number
+ 10s, no	bond for the IUs.	bond for the IC)s.		bond for the IUs.
exchange		351 + 30 = ?			
					/53 + 40
	Social So			T O	know that 5 + 4 = 9 So, 50 + 40 = 90 753 + 40 = 793
		5 tens + 3 tens 351 + 30 = 38	s = 8 tens 31		
	<i>23</i> 4 + 50 There are 3 tens and 5 tens altogether. 3 + 5 = 8				

	In total there are 8 tens. 234 + 50 = 284		
	Understand the exchange of 10 tens for 1 hundred.	Add by exchanging 10 tens for 1 hundred. 184 + 20 = ? H T O	Understand how the addition relates to counting on in IOs across IOO.
			<i>I can count in 10s 194 204</i> <i>184 + 20 = 204</i> Use number bonds within 20 to support
		184 + 20 = 204	385 + 50 There are 8 tens and 5 tens. That is 13 tens. 385 + 50 = $300 + 130 + 5$ 385 + 50 = 4.35
3-digit number + 2-digit	Use place value equipment to make and combine groups to model addition.	Use a place value grid to organise thinking and adding of Is, then IOs.	Use the vertical column method to represent the addition. Children must
number			understand how this relates to place value at each stage of the calculation.

15 | P a g e

3-digit number	Use place value equipment to model addition	Represent the required exchange on a place	Use a column method with exchange.
+ 2-digit	and understand where exchange is required.	value grid using equipment.	Children must understand how the method
number,			relates to place value at each stage of the
exchange required	Use place value counters to represent 154 + 72.	275 + 16 = ?	calculation.
	Use this to decide if any exchange is required. There are 5 tens and 7 tens. That is 12 tens so I will exchange.		$ \begin{array}{c} H & T & O \\ \hline 2 & 7 & 5 \\ + & I & 6 \\ \hline & & 1 \\ \hline & & 1 \\ \hline & & 1 \\ \end{array} $
			$ \begin{array}{c} H & T & O \\ \hline 2 & 7 & 5 \\ + & 1 & 6 \\ \hline & 9 & 1 \\ \hline \end{array} $
			$ \begin{array}{c} H & T & O \\ \hline 2 & 7 & 5 \\ + & 1 & 6 \\ 2 & 9 & 1 \\ \end{array} $
		275 + 16 = 291	
		Note: In this example, a mental method may	275 + 16 = 291
		be more efficient. The numbers for the	
			16 P a a a

		1	
		example calculation have been chosen to allow	
		children to visualise the concept and see now	
		the method relates to place value.	
		Children should be encouraged at every stage	
		to select methods that are accurate and	
		efficient.	
3-digit number	Use place value equipment to make a	Represent the place value grid with equipment	Use a column method to solve efficiently,
+ 3-diqit	representation of a calculation. This may or	to model the stages of column addition.	using known bonds. Children must
number, no	may not be structured in a place value grid.		understand how this relates to place value
exchange			at every stage of the calculation.
5	326 + 541 is represented as:		5 5 5
	/		
2 J: .: +			
S-aigit number	Use place value equipment to enact the	I vioaei ine stages of column addition using	Use column addition, ensuring
+ 3-aigit	exchange required.	place value equipment on a place value grid.	understanding of place value at every
number,			stage of the calculation.
exchange			
required			

	1			
Representing addition problems, and selecting	Encourage children to use their own drawings and choices of place value equipment to represent problems with one or more steps. These representations will help them to select	Children understand and cre represent addition problems. 275 + 99 = ?	ate bar models to	Use representations to support choices of appropriate methods.
appropriate methods	appropriate methods.	374		?
		275	99	275 99
		275 + 99 = 374		<pre>/ will add 100, then subtract 1 to find th solution. 128 + 105 + 83 = ? 1 need to add three numbers. 128 + 105 = 233 233 1 128 105 83 316 233 83</pre>
				19 P a g e

Year 3 Subtraction			
Subtracting 100s	Use known facts and unitising to subtract multiples of 100. IOO bricks IOO IOO bricks 5 - 2 = 3 500 - 200 = 300	Use known facts and unitising to subtract multiples of 100. 4 - 2 = 2 400 - 200 = 200	Understand the link with counting back in 100s. 100s. 100 200 300 400 500 400 - 200 = 200 Use known facts and unitising as efficient and accurate methods. 1 know that $7 - 4 = 3$. Therefore, 1 know that 700 - 400 = 300.
3-digit number – Is, no exchange	Use number bonds to subtract the ls. Use number bonds to subtract the ls. Use number bonds to subtract the ls.	Use number bonds to subtract the ls.	Understand the link with counting back using a number line. Use known number bonds to calculate mentally. 476 - 4 = ? 476 400 70 6

20 | P a g e

	$\frac{10 \text{ LOLLIES}}{2/4 - 3 = 2/1}$	3/9 - 4 = ? $H T O$ $3/9 - 4 = ?$ $3 I 9$ $9 - 4 = 5$ $3/9 - 4 = 3/5$	6 - 4 = 2 476 - 4 = 472
3-digit number – Is, exchange or bridging required	Understand why an exchange is necessary by exploring why I ten must be exchanged. Use place value equipment.	Represent the required exchange on a place value grid. 151 – 6 = ?	Calculate mentally by using known bonds. 151 – 6 = ? 151 – 1 – 5 = 145

3-digit number — up to 3-digit number	Use place value equipment to explore the effect of splitting a whole into two parts, and understand the link with taking away.	Represent the calculation on a place value grid. H T O H T O H H T O	Use column subtraction to calculate accurately and efficiently. <u>HTO</u> 9999
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
			24 P a g e

		Children should also understand how to exchange in calculations where there is a zero in the IOs column. H T O $5 0 6$ $- 3 2 8$
Representing	Use bar models to represent subtractions. 'Find the difference' is represented as two	Children use alternative representations to
problems	bars for comparison.	methods.
	Team A 454	Children use inverse operations to check
		additions and subtractions. The part-whole model supports
	Team B 128 ?	understanding.
	Bar models can also be used to show that a	l have completed this subtraction. 525 – 270 = 255
	part must be taken away from the whole.	I will check using addition.

			$ \begin{array}{r} 525\\ 270\\ 255\\ \hline H T O\\ 2 7 0\\ + 2 5 5\\ \hline 5 2 5\\ \hline 1 \end{array} $
Year 3			
Multiplication			
Understanding	Children continue to build understanding of	Children recognise that arrays demonstrate	Children understand the link between
equal grouping	equal groups and the relationship with repeated	commutativity.	repeated addition and multiplication.
and repeated addition	addition. They recognise both examples and non-examples using objects.	This is 3 groups of 4. This is 4 groups of 3.	$\begin{array}{c} +3 & +3 & +3 & +3 & +3 & +3 & +3 & +3 $

	Children recognise that arrays can be used to		A bar model may represent multiplications
	model commutative multiplications.		as equal groups.
	虦薙魏雄 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏		
	I can see 3 groups of 8.		
	I can see 8 groups of 3.		
Using	Understand how to use times-tables facts	Understand how times-table facts relate to	Understand how times-table facts relate to
commutativity	flexibly.	commutativity.	commutativity.
to support understanding of the times- tables			<pre>/ need to work out 4 groups of 7. / know that 7 × 4 = 28 so, / know that 4 groups of 7 = 28 and 7 groups of 4 = 28.</pre>
		6 × 4 = 24 4 × 6 = 24	
	•		28 P a a e

Understanding and using ×3, ×2, ×4 and ×8 tables	There are 6 groups of 4 pens. There are 4 groups of 6 bread rolls. <i>I can use 6 × 4 = 24 to work out both totals.</i> Children learn the times-tables as `groups of' but apply their knowledge of commutativity.	Children understand how the ×2, ×4 and ×8 tables are related through repeated doubling.	Children understand the relationship between related multiplication and division facts in known times-tables.
× o tables.	I can use the ×3 table to work out how many keys. I can also use the ×3 table to work out how many batteries.	3 x 2 = 6 3 x 4 = 12 3 x 8 = 24	$ \begin{array}{c} 10 \\ 5 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$

Using known facts to	Explore the relationship between known times- tables and multiples of 10 using place value	Understand how unitising IOs supports multiplying by multiples of IO.	Understand how to use known times-tables to multiply multiples of 10.
facts to multiply IOs, for example 3 × 40	tables and multiples of 10 using place value equipment. Make 4 groups of 3 ones. Make 4 groups of 3 tens. What is the same? What is different?	multiplying by multiples of IO. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	to multiply multiples of IO. $\begin{array}{c} +2 \\ +2 \\ +2 \\ +2 \\ +2 \\ +2 \\ +2 \\ +2 $
			$4 \times 2 = 8$ $4 \times 20 = 80$ 30 P a a e

Multiplying a 2-	Understand how to link partitioning a 2-digit	Use place value to support how partitioning is	Use addition to complete multiplications of
digit number by	number with multiplying.	linked with multiplying by a 2-digit number.	2-digit numbers by a I-digit number.
a I-digit number	Each person has 23 flowers.	3 × 24 = ?	4 × 13 = ?
	Each person has 2 tens and 3 ones.		4 × 3 = 12 4 × 10 = 40
			12 + 40 = 52 4 × 13 = 52
	There are 3 groups of 2 tens.	3 × 4 = 12	
	There are 3 groups of 3 ones.	T	
	Use place value equipment to model the		
	multiplication context.		
		3 x 20 60	
		$5 \times 20 = 00$ 60 + 12 = 72	
	There are 3 groups of 3 ones.	$3 \times 24 = 72$	
			31 P a g e

Multiplying a 2- digit number by a I-digit number, expanded column method	There are 3 groups of 2 tens. Use place value equipment to model how 10 ones are exchanged for a 10 in some multiplications. $3 \times 24 = ?$ $3 \times 20 = 60$ $3 \times 4 = 12$ 60 + 12 $3 \times 24 = 60 + 12$ $3 \times 24 = 70 + 2$ $3 \times 24 = 72$	Understand that multiplications may require an exchange of 1s for 1Os, and also 1Os for 10Os. $4 \times 23 = ?$	Children may write calculations in expanded column form, but must understand the link with place value and exchange. Children are encouraged to write the expanded parts of the calculation separately. $\boxed{T 0} 10 \\ 15 \\ x 6 \\ 6 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\$
	3 × 24 = 72		5 × 28 = ? 32 Page

		$4 \times 23 = 92$ $T 0$ $0 0 1 1 1$ $0 0 0 1 1 1$ $0 0 0 1 1 1$ $0 0 0 1 1 0$ $0 0 0 1 1 0$ $0 0 0 0 0 0 0$ $0 0 0 0 0 0$ $0 0 0 0 0 0$ $0 0 0 0 0 0$ $0 0 0 0 0 0$ $0 0 0 0 0 0$ $0 0 0 0 0 0 0$ $0 0 0 0 0 0 0$ $0 0 0 0 0 0 0 0$ $0 0 0 0 0 0 0 0 0$ $0 0 0 0 0 0 0 0 0 0 $	$ \begin{array}{c} \frac{T \ 0}{2 \ 8} \\ \times \ 5} \\ \frac{40}{40} 5 \times 8 \\ \frac{100}{140} 5 \times 20 \end{array} $
Year 3 Division			
Using timetables knowledge to divide	Use knowledge of known times-tables to calculate divisions.	Use knowledge of known times-tables to calculate divisions.	Use knowledge of known times-tables to calculate divisions. <i>I need to work out 30 shared between 5.</i>

33 | P a g e

Understanding remainders	Use equipment to understand that a remainder occurs when a set of objects cannot be divided equally any further.	Use images to explain remainders.	48 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 +
Using known facts to divide multiples of 10	Use place value equipment to understand how to divide by unitising.	Divide multiples of 10 by unitising.	Divide multiples of 10 by a single digit using known times-tables. 180 ÷ 3 = ? 180 is 18 tens. 18 divided by 3 is 6.

35 | P a g e

	Make 6 ones divided by 3.		18 tens divided by 3 is 6 tens. 18 ÷ 3 = 6 180 ÷ 3 = 60
	What is the same? What is different?	12 tens shared into 3 equal groups. 4 tens in each group.	
2-digit number divided by I- digit number, no remainders	Children explore dividing 2-digit numbers by using place value equipment.	Children explore which partitions support particular divisions.	Children partition a number into IOs and Is to divide where appropriate.

	Then divide the Is.	42÷3=14	10 + 4 = 14 42 ÷ 3 = 14
2-digit number divided by I- digit number, with remainders	Use place value equipment to understand the concept of remainder. Make 29 from place value equipment. Share it into 2 equal groups. There are two groups of 14 and I remainder.	Use place value equipment to understand the concept of remainder in division. $29 \div 2 = ?$	Partition to divide, understanding the remainder in context. 67 children try to make 5 equal lines. 67 = 50 + 17 50 ÷ 5 = 10 17 ÷ 5 = 3 remainder 2 67 ÷ 5 = 13 remainder 2 There are 13 children in each line and 2 children left out.
			38 P a g e

	Year 4						
Year 4 addition Understanding numbers to 10,000	Concrete Use place value equipment to understand the place value of 4-digit numbers.	Pictorial Represent numbers using place value counters once children understand the relationship between 1,000s and 100s.	Abstract Understand partitioning of 4-digit numbers, including numbers with digits of O.				
	4 thousands equal 4,000. I thousand is 10 hundreds.	2,000 + 500 + 40 + 2 = 2,542	5,000 + 60 + 8 = 5,068 Understand and read 4-digit numbers on a number line.				
Choosing mental	Use unitising and known facts to support mental calculations.	Use unitising and known facts to support mental calculations.					
			2010				

methods where	Make 1,405 from place value equipment.	Th	Н	T	0	Use unitising and known facts to support
арргоргиие	Now add the 1,000s. 1 thousand + 2 thousands = 3 thousands 1,405 + 2,000 = 3,405					$\begin{array}{l} 4,256 + 300 = ?\\ 2 + 3 = 5 200 + 300 = 500\\ 4,256 + 300 = 4,556 \end{array}$
			100 00 100			
		l can add i 200 + 300 So, 4,256	the 100s mi 0 = 500 + 300 = 4	entally. ⊧,556		
Column addition with exchange	Use place value equipment on a place value grid to organise thinking. Ensure that children understand how the columns relate to place value and what to do if the numbers are not all 4-digit numbers. <i>Use equipment.to show 1,905 + 775.</i>	Use place v exchanges.	alue equipn	rent to mode	l required	Use a column method to add, including exchanges.

	Include examples that ex one column.	change in more than	Include examples that exchange in more than one column.
Representing	Bar models may be used	l to represent additions	Use rounding and estimating on a number line
additions and	in problem contexts, and	l to justify mental	to check the reasonableness of an addition.
checking strategies	The problem contexts, and to justify mental methods where appropriate. $ \begin{array}{r} Th \ H \ T \\ \hline 7 \ 9 \\ + \ 5 \ 7 \\ \hline 1 \ 3 \ 7 \\ - \ 1 \ - \ -$		912 + 6,149 = ? 1 used rounding to work out that the answer should be approximately 1,000 + 6,000 = 7,000.
	6.0	00	
	2,999	3,001	
	This is equivalent to 3,	000 + 3,000.	

Year 4 Subtraction Choosing mental methods where appropriate	Use place value equipment to justify mental methods.	Use place value grids to support mental methods where appropriate. Th H T O $OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO$	Use knowledge of place value and unitising to subtract mentally where appropriate. 3,501 – 2,000 3 thousands – 2 thousands = 1 thousand 3,501 – 2,000 = 1,501
Column subtraction with exchange	Understand why exchange of a 1,000 for 100s, a 100 for 10s, or a 10 for 1s may be necessary.	Represent place value equipment on a place value grid to subtract, including exchanges where needed.	Use column subtraction, with understanding of the place value of any exchange required.

43 | P a g e

0

0

Т

Т

Column Understand why two exchanges may be Make exchanges across more than one column subtraction where there is a zero as a place holder. necessary. 2,502 - 243 = ? 2,502 - 243 = ? with exchange across more Th Η than one column Th Η need to exchange a 10 for some Is, but there are not any IOs here. \rightarrow \rightarrow

Make exchanges across more than one column where there is a zero as a place holder. 2.502 - 243 = ?

45 | Page

Representing subtractions and checking strategies	Use bar models to represent subtractions where a part needs to be calculated. Total 5,762 ? 2,899 Yes votes No votes Use inverse operations to check subtractions. / calculated 1,225 - 799 = 574. / will check by adding the parts. $\frac{\text{Th H T 0}}{7 9 9}$ + 5 7 4 $\frac{13 7 3}{1 + 1 + 1}$
	I can work out the total number of Yes votes using 5,762 – 2,899. Bar models can also represent `find the difference' as a subtraction problem. Danny 899 Luis 1,005
Year 4 Multiplication	
	46 P a g e

Multiplying by	Use unitising and place value equipment to	Use unitising and place value equipment to	Use known facts and understanding of place
multiples of 10	understand how to multiply by multiples of	understand how to multiply by multiples of I,	value and commutativity to multiply mentally.
and 100	1, 10 and 100.	10 and 100.	4 × 7 = 28
			4 × 70 = 280 40 × 7 = 280 4 × 700 = 2,800 400 × 7 = 2,800
		3 × 4 = 12	
	3 groups of 4 ones is 12 ones.	3 × 40 = 120	
	3 groups of 4 tens is 12 tens.	3 × 400 = 1,200	
	3 groups of 4 hundreds is 12 hundreds.		
Understanding	Understand the special cases of multiplying	Represent the relationship between the ×9	Understand how times-tables relate to counting
times-tables up	by I and O.	table and the ×10 table.	patterns.
to 12 × 12			Understand links between the
			×3 table, ×6 table and ×9 table
			5 × 6 is double 5 × 3
	Strene und		×5 table and ×6 table
			know that 7 × 5 = 35 so know that 7 × 6 = 35 + 7.
	$5 \times 1 - 5$ $5 \times 0 - 0$		×5 table and ×7 table
			4/ Page

		Represent the $\times II$ table and $\times I2$ tables in relation to the $\times IO$ table.	3X5=3X5+3X2
		$2 \times = 20 + 2$ $3 \times = 30 + 3$	3 × 5 3 × 2
		$4 \times = 40 + 4$	3 × 7
		4 × 12 = 40 + 8	×9 table and ×10 table 6 × 10 = 60 6 × 9 = 60 – 6
Understanding and using partitioning in multiplication	Make multiplications by partitioning. 4 × 12 is 4 groups of 10 and 4 groups of 2.	Understand how multiplication and partitioning are related through addition.	Use partitioning to multiply 2-digit numbers by a single digit. 18 × 6 = ?
		•	48 P a a e

	$4 \times 12 = 40 + 8$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ 8 \times 6 = 0 \times 6 + 8 \times 6$ = 60 = 108 $ 8 \times 6 = 0 \times 6 + 8 \times 6$ = 108 $ 8 \times 6 = 0 \times 6 + 8 \times 6$ = 60 + 48 $ 8 \times 6 = 0 \times 6 + 8 \times 6$ = 60 + 48
Column multiplication for 2- and 3- digit numbers multiplied by a single digit	Use place value equipment to make multiplications. Make 4 × 136 using equipment.	Use place value equipment alongside a column method for multiplication of up to 3-digit numbers by a single digit.	Use the formal column method for up to 3- digit numbers multiplied by a single digit. 3 2 x 3 9 3 6
			49 P a g e

	l can work out how many ls, lOs and lOOs. There are 4 × 6 ones 24 ones There are 4 × 3 tens 12 tens There are 4 × 1 hundred 4 hundreds 24 + 120 + 400 = 544		Understand how the expanded column method is related to the formal column method and understand how any exchanges are related to place value at each stage of the calculation. $\begin{array}{cccccccccccccccccccccccccccccccccccc$
Multiplying more than two numbers	Represent situations by multiplying three numbers together.	Understand that commutativity can be used to multiply in different orders. 00000 00000 000000 000000 000000 00000 000000 000000 000000 00000 000000 000000 000000 00000 000000 000000 000000 $2 \times 6 \times 10 = 120$ $12 \times 10 = 120$	Use knowledge of factors to simplify some multiplications. 24 × 5 = 12 × 2 × 5
			50 P a g e

·			
	There are $5 \times 2 \times 3$ stickers in total.	10 × 6 × 2 = 120	
	5 - 2 - 3 - 30	60 × 2 = 120	$12 \times 2 \times 5 =$
	$J \times Z \times J = J U$		
	—		
			$12 \times 10 = 120$
	$10 \times 3 = 30$		
	1433/22260014 antoisets sensition summing statements		
			$50.24 \times 5 = 120$
			50, 21 × 5 = 120
Yogr 4			
Division			
Understanding	Use objects to explore families of	Represent divisions using an array.	Understand families of related multiplication
the relationship	multiplication and division facts.		and division facts.
between			
multiplication			$l know that 5 \times 7 = 35$
including			cal know all these facts:
times-tables	$\bigcirc \bigcirc $		$5 \times 7 - 35$
			$7 \times 5 = 35$
			$35 = 5 \times 7$
			35 = 7 × 5
	4 × 6 = 24	28 ÷ 7 = 4	
			51 P a g e

CALULATION POLICY 2023					
	24 is 6 groups of 4. 24 is 4 groups of 6. 24 divided by 6 is 4. 24 divided by 4 is 6.		35 ÷ 5 = 7 35 ÷ 7 = 5 7 = 35 ÷ 5 5 = 35 ÷ 7		
Dividing multiples of IO and IOO by a single digit	Use place value equipment to understand how to use unitising to divide.	Represent divisions using place value equipment. $9 \div 3 = $ 1 1 1 1 1 1 1 1 1 1	Use known facts to divide IOs and IOOs by a single digit. 15 ÷ 3 = 5 150 ÷ 3 = 50 1500 ÷ 3 = 500		

Lower KS2 ~ Progression in Fractions

58 | Page

60 | P a g e

61 | Page

63 | P a g e

Standard Written Method

	Addition	Subtraction	Multiplication	Division
Reception	I+5= I+6=	3-1= 2-1= 2 $8-1= 4-1= 2$ $7=4:$	0 1 2 3 4 5 6	0 1 2 3 4 5 6 7 8 9 <u>10</u>
Year I	45 55 65 66 67 68	10-6=4		
			1+1=2 2+2=4 3+3=6 4+4=8 5+5=10	

65 | P a g e

Year 2	59 <u>₁43+</u> 102	⁶ 7 ¹ 3 <u>49-</u> 24	8 x 5 = 40	35 ÷ 5 = 7
Year 3	523 <u>,393+</u> 916	^⁴ 5 ^¹ 23 <u>393-</u> 130	59 <u>6x</u> 54 (6x9) <u>300</u> (6x50) 354	8) 32
Year 4	1,312 <u>3,094+</u> 4,406	6, ¹ 2 ¹ 73 <u>1,093-</u> 5,180	159 <u>16x</u> 954 <u>11,590+</u> 2,544	7)945

66 | P a g e

Year 5	13,123 <u>3</u> 0,943+ 44,066	6 ¹ 2 ¹ 743 <u>1</u> 0,923- 51,820	2259 <u>6x</u> 54 300 1,200 <u>12,000+</u> 13,554	279 r 5 6)1679
Year 6	613,123 1310,943+ 744,066	6112,1743 100,923- 511,820	2259 46x 13,554 901,360+ 103,914	$\begin{array}{r} 0389.739\\ 23 8964\\ \underline{69-}\\ 23 206\\ \underline{69-}\\ 23 206\\ \underline{69-}\\ 23 206\\ \underline{69-}\\ 23 206\\ \underline{69-}\\ 207\\ \underline{184-}\\ 92 0224\\ \underline{138}\\ 207-\\ \underline{161-}\\ 0090\\ \underline{69-}\\ 210\\ \underline{207-}\\ 003\\ \end{array}$

68 | P a g e