

Calculation Policy

Year I and Year 2

Maths Calculation Policy Year 1 and Year 2

The following pages show our school's progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the concrete, pictorial and abstract approach throughout our school helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods.

Mathematics Intent

At Teagues Bridge, our intention is ambitious. We aim to create strong mathematicians who have the necessary skills and understanding to tackle mathematical challenges in varying contexts, including the ability to reason and apply their knowledge to solving problems. This should mean that children are able to apply their knowledge to everyday life and can aspire to achieve anything that they want. We want our pupils to have strong mental manipulation and to use written strategies when appropriate.

Our philosophy for mathematics is replacing an idea that maths is lots of rules and numbers with a study of patterns and connected ideas. In early years they will build a foundation of number understanding and representation through mainly concrete and pictorial representations. The approach will be supported by in depth questioning, throughout the school to develop mastery.

Use of CPA is encouraged to ensure the curriculum is accessible for all children and that they all have the opportunity and are able to demonstrate their understanding in a variety of ways. This will enable them to have a good understanding of maths and not just the ability to follow a procedure. We want to empower them to want to ask questions and want to find the answers.
Aims: The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and nonroutine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.
Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programmes of study are, by necessity, organised into apparently distinct domains, but pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects.

The expectation is that the majority of pupils will move through the programmes of study at broadly the same pace. However, decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through
being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on
Our lessons are structured to enable all children to achieve and have an opportunity to make progress with their learning. Each lesson begins with a CLIC maths activity, where they have chance to develop their mental strategies, secure number facts and number manipulation. They then develop their mathematical fluency with the teacher modelling and explaining before they have a go themselves. Children then have a reasoning/problem solving activity which is a variation of the previous work to demonstrate they have mastered the objective. Children who are ready can then challenge themselves with a task that requires applying the learning to a greater depth. We have our own programme of study which is supported with schemes like White Rose to support

	Year 1	Known facts	Essential Knowledge	Year 2	Known facts	Essential Knowledge
Addition	Read, write, and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs.	Represent and use number bonds and related subtraction facts within 20. Add and subtract I digit and 2 digit numbers to 20 , including zero	I more. Largest number first. Add 10. Ten plus ones. Doubles up to 10 . Number bonds 5 and 6. Number bonds 7 and 8. Number bonds 9 and IO. Use number bonds of 10 to derive bonds of II.	Recording addition in columns supports place value and prepares for formal written methods with larger numbers.	Recall and use addition and subtraction facts to 20 fluently and derive and use related facts up to 100 .	IO more. Add 1 digit to 2 digit by bridging. Partion second number and add tens and then ones. Add 10 and multiples of 10 . Doubles up to 20 and multiples of 5 . Add near multiples of IO. Number bonds 20, 12 and 13 . Number bonds 14 and 15. Number bonds 16 and 17. Number bonds 18 and 19 Partion and recombine.
Subtraction	Read, write, and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs.	Represent and use number bonds and related subtraction facts within 20.	I less, Count back, Subtract IO, Teens subtract IO, number bonds: subtraction 5 and 6 , subtraction 7	Recording subtraction in columns supports place value and prepares for formal written methods with larger numbers.	Recall and use addition and subtraction facts to 20 fluently and derive and use related facts up to 100 .	IO less, subtract I digit from 2 digit by bridging, partion second number and countback in tens and
						4 Page

		Add and subtract I digit and 2 digit numbers to 20 , including zer0	and 8 , subtraction 9 and 10 , difference between.			ones, subtract 10 and multiples of 10 , subtract near multiples of 10 , add near doubles of 10 , Number bonds: subtraction 20, 12 and 13,14 and 15 , 16 and 17,18 and 19 , difference between.
Multiplication	Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations, and arrays with the support of the teacher.	Count in multiples of twos, fives and tens.	Count in 2's Count in 5's Count in IO's Doubles up to 10 Double multiples of 10 Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and IOs.	Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals (=) signs.	Recall and use X and \div facts for the 2,5 and $10 \times$ tables, including recognising odd and even numbers.	$2 x$ table $5 x$ table IOx table Doubles up to 20 Doubles of multiples of 5. Count in 3s.
Division	solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations, and arrays with the support of the teacher.	Count in multiples of twos, fives and tens.	Count back in 2s Count back in 5 s Count back in IOs Halves up to 10 . Halve multiples of 10 How many 2s? 5s? IOs? Test of divisibility - All even numbers will divide by 2	Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals ($=$) signs.	Recall and use X and \div facts for the 2,5 and IOX tables, including recognising odd and even numbers.	Division facts ($2 x$ table) Division facts (IOx table) Division facts (5x table) Halves up to 20 Review division facts (2 $\times 5 \times 10 \times$ tables) Count back in 3s Test all divisibility - all numbers ending in O will divide by 10 . All numbers ending in 5 and 0 will divide by 5 .

Vocabulary	Year 1	Year 2
Addition	Subject specific: put together, add, addition, altogether, double, total, more than, equals, plus, make, double, near double, one more, two more.. ten more... one hundred more, how many more to make. .? HOow many more is. . than. . ? How much more is. . ? Instructional vocabulary: start from, start with, start at look at point, to show me, show how you... show your working	Subject specific: put together, add, addition, altogether, increase, sum, double, total, more than, equals, plus, make, commutative, inverse, sum, partition, near double, how many more to make. . ? Instructional vocabulary: Calculate, tell me, describe, name, pick out, discuss, talk about, explain, explain your method, explain how you got your answer, give an example of... show how you..
Subtraction	Subject specific: Subtract, takeaway, distance between, difference between, less than, minus, leave, fewer, left over, equals, How many more? How much greater? How much more is. . ? How many are left over? How many have gone? One less, two less, ten less, How many fewer is... than.. ? Difference between, half, halve. Instructional vocabulary: start from, start with, start at look at point, to show me	Subject specific: Subtract, subtraction, how many are left over? takeaway, distance between, difference between, less than, minus, leave, fewer, left over, equals, tens boundary, partition, rearrange, inverse, one less, ten less, one hundred less, how many fewer is..than.? how much less is. .? Difference between, half, halve. Difference, partion, rearrange, inverse, place value. Instructional vocabulary: tell me, describe, name, pick out, discuss, talk about, explain, explain your method, explain how you got your answer, give an example of... show how you.... solve, investigate.
Multiplication	Subject specific: double, equal groups, array, lots of, count in ones, twos, tens.. groups of. Instructional vocabulary: carry on, continue repeat what comes next? find, choose, collect. use, make, build. tell me, describe, pick out, talk about, explain, show me, read, write, record	Subject specific: double, equal groups, array, lots of, odd, even, commutative, repeated addition, inverse, groups of, multiply, multiplied by, multiple of, twice, row, column, halve, share, repeated addition, share equally. array row, column double. Instructional vocabulary: carry on, continue, repeat, what comes next? predict describe the pattern describe the rule. find, find all, find different, investigate Give an example of... Show how you...

Division

Subject specific:
share, equal groups, array, groups of, odd, even Instructional vocabulary: count out, share out, left, left over

Subject specific:

share, equal groups, array pairs, divide, divided by, divided into, left over, odd, even, repeated addition, inverse.
Instructional vocabulary:
tell me, describe, name, pick out, discuss, talk about, explain, explain your method Explain how you got your answer, give an example of. show how you

KEYSTAGE I

Children develop the core ideas that underpin all calculation. They begin by connecting calculation with counting on and counting back, but they should learn that understanding wholes and parts will enable them to calculate efficiently and accurately, and with greater flexibility. They learn how to use an understanding of 10 s and Is to develop their calculation strategies, especially in addition and subtraction.

Addition and Subtraction

Children first learn to connect addition and subtraction with counting, but they soon develop two very important skills: an understanding of parts and wholes, and an understanding of unitising IOs, to develop efficient and effective calculation strategies based on known number bonds and an increasing awareness of place value. Addition and subtraction are taught in a way that is interlinked to highlight the link between the two operations.

Multiplication and Division

Children develop an awareness of equal groups and link this with counting in equal steps, starting with 2s, 5s and IOs. In Year 2, they learn to connect the language of equal groups with the mathematical symbols for multiplication and division.
They learn how multiplication and division can be related to repeated addition and repeated subtraction to find the answer to the calculation. In this key stage, it is vital that children explore and experience a variety of strong images and manipulative representations of equal groups,

Fractions

In Year I, children encounter halves and quarters, and link this with their understanding of sharing. They experience key spatial representations of these fractions, and learn to recognise examples and non-examples, based on their awareness of equal parts of a whole.
In Year 2, they develop an awareness of unit fractions and experience non-unit fractions, and they learn to write them and read them in the common format of numerator and denominator.

A key idea is that children will select methods and	including concrete experiences as well as abstract
approaches based on their number sense. For	
example, in Year I, when faced with $15-3$ and	
calculations.	
Children begin to recall some key multiplication	
I5-I3, they will adapt their ways of	facts, including doubles, and an understanding of
approaching the calculation appropriately. The	the 2,5 and IO times-tables and how they are
teaching should always emphasise the importance	related to counting.
of mathematical thinking to ensure accuracy and	
flexibility of approach, and the importance of	
using known number facts to harness their recall	
of bonds within 20 to support both addition and	
subtraction methods.	
In Year 2, they will start to see calculations	
presented in a column format, although this is	
not expected to be formalised until KS2. We show	
the column method in Year 2 as an option;	
teachers may not wish to include it until Year 3.	

YEAR I			
	Concrete	Pictorial	Aostract
YEAR I Addition	Counting and adding more Children add one more person or object to a group to find one more.	Counting and adding more Children add one more cube or counter to a group to represent one more. One more than 4 is 5 .	Counting and adding more Use a number line to understand how to link counting on with finding one more. One more than 6 is 7 . 7 is one more than 6 . Learn to link counting on with adding more than one. $5+3=8$
	Understanding part-part-whole relationship Sort people and objects into parts and understand the relationship with the whole.	Understanding part-part-whole relationship Children draw to represent the parts and understand the relationship with the whole.	Understanding part-part-whole relationship Use a part-whole model to represent the numbers.

		a) 4 b) 3 $\begin{aligned} & 4+0=4 \\ & 3+1=4 \end{aligned}$
Understanding teen numbers as a complete 10 and some more Complete a group of 10 objects and count more. 13 is 10 and 3 more.	Understanding teen numbers as a complete 10 and some more Use a ten frame to support understanding of a complete 10 for teen numbers. 13 is 10 and 3 more.	Understanding teen numbers as a complete 10 and some more. 1 ten and 3 ones equal 13 . $10+3=13$

Adding by counting on Children use knowledge of counting to 20 to find a total by counting on using people or objects.	Adding by counting on Children use counters to support and represent their counting on strategy.	Adding by counting on Children use number lines or number tracks to support their counting on strategy. $7+5=$ \square
Adding the Is Children use bead strings to recognise how to add the Is to find the total efficiently. $\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$	Adding the Is Children represent calculations using ten frames to add a teen and Is. $\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$	Adding the Is Children recognise that a teen is made from a IO and some Is and use their knowledge of addition within 10 to work efficiently. $3+5=8$ So, $13+5=18$
Bridging the 10 using number bonds	Bridging the 10 using number bonds	Bridging the 10 using number bonds
12\|Page		

	Children use a bead string to complete a 10 and understand how this relates to the addition. 7 add 3 makes 10 . So, 7 add 5 is 10 and 2 more.	Children use counters to complete a ten frame and understand how they can add using knowledge of number bonds to $I O$.	Use a part-whole model and a number line to support the calculation.
Year I Subtraction	Counting back and taking away Children arrange objects and remove to find how many are left. I less than 6 is 5 . 6 subtract / is 5 .	Counting back and taking away Children draw and cross out or use counters to represent objects from a problem. $\mathrm{q}-\square=\square$ There are \square children left.	Counting back and taking away Children count back to take away and use a number line or number track to support the method. $9-3=6$ $15-6=9$
			13\|Page

15|Page

	$5-4=1$ The difference between 5 and 4 is 1 .	The difference between 10 and 6 is 4 .
Subtraction within 20 Understand when and how to subtract Is efficiently. Use a bead string to subtract Is efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$	Subtraction within 20 Understand when and how to subtract is efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$	Subtraction within 20 Understand how to use knowledge of bonds within IO to subtract efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$
Subtracting 10s and Is For example: 18 - 12 Subtract 12 by first subtracting the 10 , then the remaining 2 . First subtract the 10, then take away 2.	Subtracting 10 s and Is For example: 18 - 12 Use ten frames to represent the efficient method of subtracting 12 . First subtract the 10 , then subtract 2 .	Subtracting 10s and Is Use a part-whole model to support the calculation.
16\|Page		

			$\begin{aligned} & 19-14 \\ & 19-10=9 \\ & 9-4=5 \\ & \text { So, } 19-14=5 \end{aligned}$
	Subtraction bridging 10 using number bonds For example: 12-7 Arrange objects into a 10 and some Is , then decide on how to split the 7 into parts. 7 is 2 and 5, so I take away the 2 and then the 5 .	Subtraction bridging 10 using number bonds Represent the use of bonds using ten frames. For 13-5, I take away 3 to make 10, then take away 2 to make 8.	Subtraction bridging 10 using number bonds Use a number line and a part-whole model to support the method. $13-5$
Year I Multiplication	Recognising and making equal groups Children arrange objects in equal and unequal groups and understand how to recognise whether they are equal. A	Recognising and making equal groups Children draw and represent equal and unequal groups. B	Describe equal groups using words Three equal groups of 4 . Four equal groups of 3 .

Finding the total of equal groups by counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s

There are 5 pens in each pack
5. . I0. . .15. . 20. . 25. . 30. . 35. . 40

Year 1

Division

Grouping

Learn to make equal groups from a whole and find how many equal groups of a certain size can be made.
Sort a whole set people and objects into equal groups.

There are 10 children altogether

Finding the total of equal groups by counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s
100 squares and ten frames support counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 1 Os .

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Grouping

Represent a whole and work out how many equal groups.

There are 10 in total.
There are 5 in each group.

Finding the total of equal groups by counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s
Use a number line to support repeated addition through counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and IOs.

Grouping

Children may relate this to counting back in steps of 2,5 or 10 .

There are 2 in each group.
There are 5 groups.

Year 2				
	Concrete	Pictorial	Abstract	
Year 2 Addition				
Understanding IOs and Is	Group objects into IOs and Is. Bundle straws to understand unitising of IOs.	Understand IOs and Is equipment, and link with visual representations on ten frames.	Represent numbers using equipment or	place value grid, nerals.
Adding 10s	Use known bonds and unitising to add IOs. 1 know that $4+3=7$.	Use known bonds and unitising to add IOs. / know that $4+3=7$. So, 1 know that 4 tens add 3 tens is 7 tens.	Use known bonds and unitising to add IOs.	

	So, 1 know that 4 tens add 3 tens is 7 tens.		$4+3=$ $4+3=7$ 4 tens +3 tens $=7$ tens $40+30=70$
Adding a ldigit number to a 2-digit number not bridging a 10 .	Add the Is to find the total. Use known bonds within 10 . 41 is 4 tens and I one. 41 add 6 ones is 4 tens and 7 ones.	Add the Is. 34 is 3 tens and 4 ones. 4 ones and 5 ones are 9 ones. The total is 3 tens and 9 ones.	Add the ls. Understanding the link between counting on and using known number facts. Children should be encouraged to use known number bonds to improve efficiency and accuracy.

to a 2-digit number using exchange	T 0 喊 图		T O 2 4 8 3 2
Adding a multiple of 10 to a 2-digit number	Add the 10 s and then recombine. 27 is 2 tens and 7 ones. 50 is 5 tens. There are 7 tens in total and 7 ones. So, $27+50$ is 7 tens and 7 ones.	Add the 10 s and then recombine. 66 is 6 tens and 6 ones. $66+10=76$	Add the IOs and then recombine. $\begin{aligned} & 37+20=? \\ & 30+20=50 \\ & 50+7=57 \\ & 37+20=57 \end{aligned}$ $\begin{aligned} & 40+20=60 \\ & 6+7=13 \\ & 60+13=73 \end{aligned}$

Adding two 2digit numbers	Add the IOs and Is separately. $5+3=8$ There are 8 ones in total. $3+2=5$ There are 5 tens in total. $35+23=58$	Add the IOs and Is separately. Use a partwhole model to support. $\begin{aligned} & 11=10+1 \\ & 32+10=42 \\ & 42+1=43 \\ & 32+11=43 \end{aligned}$	Add the 10 s and the Is separately, bridging IOs where required. A number line can support the calculations. $17+25$
Adding two 2dogot numbers using a place value grid.	Add the Is. Then add the IOs.		Add the Is. Then add the $1 \mathrm{Os}_{\mathrm{s}}$ $\begin{array}{r} 1 \\ \hline 3 \\ +14 \\ \hline \end{array}$

Adding two 2- \quad Add the Is. Exchange 10 ones for a ten. digit numbers using a place value grid

Add the Is. Exchange 10 ones for a ten. Then add the 10 s.

$+$| T | 0 |
| :---: | :---: |
| 3 | 6 |
| 2 | 9 |
| 6 | 5 |
| | 1 |

Year 2 Subtraction			
Subtracting multiples of 10	Use known number bonds and unitising to subtract multiples of 10 . $\triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \varnothing$ 8 subtract 6 is 2. So, 8 tens subtract σ tens is 2 tens.	Use known number bonds and unitising to subtract multiples of 10 . $10-3=7$ So, 10 tens subtract 3 tens is 7 tens.	Use known number bonds and unitising to subtract multiples of 10 . 7 tens subtract 5 tens is 2 tens. $70-50=20$
Subtracting a single-digit number	Subtract the Is. This may be done in or out of a place value grid.	Subtract the ls. This may be done in or out of a place value grid.	Subtract the Is. Understand the link between counting back and subtracting the Is using known bonds.

Subtracting a single-digit number bridging 10	Bridge IO by using known bonds. $35-6$ I took away 5 counters, then I more.	Bridge IO by using known bonds. First, I will subtract 5, then 1.	Bridge IO by using known bonds. $\begin{aligned} & 24-6=? \\ & 24-4-2=? \end{aligned}$
Subtracting a single-digit number using exchange	Exchange I ten for 10 ones. This may be done in or out of a place value grid.	Exchange I ten for 10 ones.	Exchange I ten for 10 ones. $25-7=18$

$$
28 \mid P a g e
$$

Subtracting a 2-digit number	Subtracting by taking away. $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ 0000000000 ○○○○○○○○○○ 0000000000 $\bigcirc \bigcirc \bigcirc \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing$ 61-18 I took away I ten and 8 ones.	Subtract the $1 \mathrm{O}_{\mathrm{s}}$ and the Is . This can be represented on a 100 square.										Subtract the $10 s$ and the $1 s$. This can be represented on a number line.
		1	2	3	4	5	6	7	8	q	10	
		II	12	13	14	15	16	17	18	19	20	
		21	22	23	24	25	26	27	28	29	30	$\begin{array}{lllll}23 & 33 & 43 & 53 & 6364\end{array}$
		31	32	33	34	35	36	37	38	39	40	$64-41=$?
		41	42	43	44	45	46	47	48	49	50	64
		51	52	53	54	55	56	57	58	59	60	$63-40=23$
		61	62	63	64	65	66	67	68	69	70	$64-41=23$
		71	72	73	74	75	76	77	78	79	80	$5-$
		81	82	83	84	85	86	87	88	89	90	$\begin{array}{llll}21 & 26 & 36 & 46\end{array}$
		91	92	93	94	95	96	97	98	१9	100	$\begin{aligned} & 46-20=26 \\ & 26-5=21 \\ & 46-25=21 \end{aligned}$
Subtracting a 2-digit number using place value and columns	Subtract the Is. Then subtract the IOs. This may be done in or out of a place value grid.	Subtract the Is. Then subtract the 10 s .										Using column subtraction, subtract the Is. Then subtract the IOs.
		Tens										
		田						$6 \varnothing$	\star			

Understanding commutativity	Use arrays to visualise commutativity I can see 6 groups of 3 1 can see 3 groups of 6	Form arrays using counters to visualise commutativity. Rotate the array to show that orientation does not change the multiplication 000000000000000000000000000000 This is 2 groups of 6 and also 6 groups of 2	
Learning $\times 2$, $\times 5$ and $\times 10$ table facts	Develop an understanding of how to unitise groups of 2,5 and 10 and learn corresponding times-table facts.	Understand how to relate counting in unitised groups and repeated addition with knowing key times-table facts	Understand how the times-tables increase and contain patterns.

		Build tables using counting stick- forwards and backwards and with missing jumps using doubling and halving.	
Year 2 Division			
Sharing equally	Start with a whole and share into equal parts, one at a time. 12 shared equally between 2. They get 6 each. Start to understand how this also relates to grouping. To share equally between 3 people, take a group of 3 and give I to each person. Keep going until all the objects have been shared	Represent the objects shared into equal parts using a bar model. 20 shared into 5 equal parts. There are 4 in each part.	Use a bar model to support understanding of the division. 000000000000000000 18 $18 \div 2=9$

(2) There are 7 cakes and 2 children. How

Using known times-tables to solve divisions.	Understand the relationship between multiplication facts and division. 4 groups of 5 cars is 20 cars in total. 20 divided by 4 is 5 .	Link equal grouping with repeated subtraction and known times-table facts to support division. 40 divided by 4 is 10 . Use a bar model to support understanding of the link between times-table knowledge and division.	Relate times-table knowledge directly to division. $\begin{aligned} & 1 \times 10=10 \\ & 2 \times 10=20 \\ & 3 \times 10=30 \\ & 4 \times 10=40 \\ & 5 \times 10=50 \\ & 6 \times 10=60 \\ & 7 \times 10=70 \\ & 8 \times 10=80 \end{aligned}$ $\text { I used the } 10$ $\begin{aligned} & \text { times-table } \\ & \text { to help me. } \end{aligned}$ $3 \times 10=30$ 1 know that 3 groups of 10 makes 30 , so 1 know that 30 divided by 10 is 3 . $3 \times 10=30 s$

$$
37 \mid P a g e
$$

Progression in Fractions ~ KSI

		${ }^{381} \mathrm{prag}^{\text {a }}$

Objective 2: Write simple fractions and recognise the equivalence of \square and $2 / 4$

$40 \mid P a g e$

Standard Written Method

	Addition	Subtraction	Multiplication	Division
Reception	$1+5=$ $1+6=$ 0 0 0 0 0 0	$\begin{aligned} & \square=34567=010 \\ & \mathbf{3 - 1}=\square \quad \mathbf{2 - 1}=\square \\ & \mathbf{8 - 1}=\square \quad \mathbf{4 - 1}=\square \end{aligned}$ \qquad		
Year 1				

41|Page

Year 2	$\begin{aligned} & 59 \\ & +43+ \\ & \hline 102 \end{aligned}$	67^{13} 49 24	$8 \times 5=40$	$35 \div 5=7$
Year 3	$\begin{aligned} & 523 \\ & 393+ \\ & 916 \end{aligned}$	$\begin{aligned} & { }^{4} 5 \text { '23 } \\ & 393- \\ & \hline 130 \end{aligned}$	$\begin{aligned} & 59 \\ & \underset{6 x}{ } \\ & 54(6 \times 9) \\ & \underline{300}(6 \times 50) \\ & 354 \end{aligned}$	$\begin{array}{r} 4 \\ 8 \longdiv { 3 2 } \end{array}$
Year 4	$\begin{aligned} & 1,312 \\ & 3,094+ \\ & 4,406 \end{aligned}$	$\begin{aligned} & \text { 6,273 } \\ & 1,093- \\ & 5,180 \end{aligned}$	$\begin{aligned} & 159 \\ & \frac{16 \times 954}{1,590+} \\ & \frac{1,544}{2,544} \end{aligned}$	$\begin{array}{r} 135 \\ 7 \longdiv { 9 4 5 } \end{array}$

Year 5	$\begin{aligned} & 13,123 \\ & 30,943+ \\ & 44,066 \end{aligned}$	$\begin{aligned} & 62,743 \\ & 10,923- \\ & 51,820 \end{aligned}$	2259 $12,000+$ 13,554 1,200	$6 \longdiv { 1 6 7 9 } ^ { 2 7 9 } \text { r } 5$
Year 6	$\begin{aligned} & 613,123 \\ & 1310,943+ \\ & 744,066 \end{aligned}$	$\begin{aligned} & 6112,1743 \\ & 100,923-511,820 \end{aligned}$	$\begin{array}{r} 2259 \\ 46 \times 13,554 \\ 901,360+ \\ 103,914 \end{array}$	

