Teagues Bridge Calculation Policy
 Revised February 2023

iviatnematucs intent

At Teagues Bridge, our intention is ambitious. We aim to create strong mathematicians who have the necessary skills and understanding to tackle mathematical challenges in varying contexts, including the ability to reason and apply their knowledge to solving problems. This should mean that children are able to apply their knowledge to everyday life and can aspire to achieve anything that they want. We want our pupils to have strong mental manipulation and to use written strategies when appropriate.

Our philosophy for mathematics is replacing an idea that maths is lots of rules and numbers with a study of patterns and connected ideas. In early years they will build a foundation of number understanding and representation through mainly concrete and pictorial representations. The approach will be supported by in depth questioning, throughout the school to develop mastery.

Use of CPA is encouraged to ensure the curriculum is accessible for all children and that they all have the opportunity and are able to demonstrate their understanding in a variety of ways. This will enable them to have a good understanding of maths and not just the ability to follow a procedure. We want to empower them to want to ask questions and want to find the answers.
Aims: The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and nonroutine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.
Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programmes of study are, by necessity, organised into apparently distinct domains, but pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects.

The expectation is that the majority of pupils will move through the programmes of study at broadly the same pace. However, decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on.
Our lessons are structured to enable all children to achieve and have an opportunity to make progress with their learning. Each lesson begins with a CLIC maths activity, where they have chance to develop their mental strategies, secure number facts and number manipulation. They then develop their mathematical fluency with the teacher modelling and explaining before they have a go themselves. Children
then have a reasoning/ problem solving activity which is a variation of the previous work to demonstrate they have mastered the objective. Children who are ready can then challenge themselves with a task that requires applying the learning to a greater depth. We have our own programme of study which is supported with schemes like White Rose to support.

Addition

EYFS	Reception: ELG 2021 - Have an understanding of number to 10 , linking names of numbers, numerals, their value, and their position in the counting order. - Subitise (recognise quantities without counting) up to 5. - Automatically recall number bonds for numbers 0-5 and for 10 , including corresponding partitioning facts. - Automatically recall double facts up $5+5$ - Compare sets of objects up to 10 in different contexts, considering size and difference. - Explore patterns of numbers within numbers up to $I O$, including evens and odds.	
Year	I	2
Layers of vocabulary Appendix la Beck's Tiers of Vocabulary Appendix lb: Vocabulary book	Basic to subject specific (Beck's Tiers): +, add, more plus make, sum, total altogether score double, near double one more, two more... ten more how many more to make. ? how many more is. . . than..? how much more is. .? Instructional vocabulary: start from, start with, start at look at point, to show me	Basic to subject specific (Beck's Tiers): +, add, addition, more, plus make, sum, total altogether score double, near double one more, two more... ten more... one hundred more how many more to make. .? how many more is... than. .? how much more is. .? Instructional vocabulary: tell me, describe, name, pick out, discuss, talk about, explain, explain your method, explain how you got your answer, give an example of.. show how you...
NC 2014	Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs.	Using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods

4\|Page

			$6+\overparen{3+4}+7+2=22$ Record thinking	$47+50=$ Re-arranging $18+4=$ Tell me what you know about 4, e.g. $3+1,2+2$ $18+4=$ Rearrange the 4 into $2+218+2+2=20+2=22$ $59+24=$ Partition the 24 into $20+4$ and rearrange the 4 into $1+3$. $\begin{aligned} & \text { So } 59+24=59+20+1+3= \\ & 59+1+20+3=83 \end{aligned}$		Ben did $14+9=$ 23 How could he have done it? Use sticks and smiles to partition and then smile to join key numbers together. $\left.\left.\right\|_{20} ^{28+45}\right\|_{40}$
Known facts	Represent \& use number bonds and related subtraction facts within 20 Add and subtract I digit and 2 digit numbers to 20, including zero		Recall and use addition and subtraction facts to 20 fluently and derive and use related facts up to 100 .			
Essential Knowledge	1 more	Number bonds: 5 and 6	10 more		Number bonds:20,12 and 13	
	Largest number first.	Number bonds: 7 and 8	Add I digit to 2 digit by bridging		Number bonds: 14 and 15	
	Add 10.	Number bonds: 9 and 10	Partition second number and add tens then ones.		Number bonds: 16 and 17	
	Ten plus ones.	Use number bonds of 10 to derive bonds of II	Add 10 and multiples of 10 .		Number bonds: 18 and 19	
	Doubles up to 10 .		Doubles up to 20 and multiples of 5		Partition and recombine.	
			Add near multiples of 10 .			

6 | Page

	$\begin{aligned} & 40+80=120 \text { using } 4+8 \\ & =12 \\ & \text { So } 400+800=1200 \end{aligned}$ Remodelling strategy $243+198$ $241+200=441$ Place value materials to represent 3 digit numbers Base 10 and then place value counters. 100	"7 add 4 equals 11 and 60 add 20 equals $80.1+0=1$ and 1 ten +8 tens $=9$ tens" " 6 tens add 2 tens equals 8 tens" 625 $+\quad 48$ $13(5+8)$ $60(20+40)$ $+\underline{600}(600+0)$ 673 All language in the context of the place value and added in columns, lining up the digits. Teaching point: no more than 9 in any given column following regrouping.	Representing problems There are 334 children at Springfield School and 75 at Oak Nursery. How many children are there altogether?	$\begin{aligned} & 3548+1998 \\ & 3546+2000=5546 \end{aligned}$ Place value materials to represent calculations	hundred to carry makes 1000 "7648+1486$14(8+6)$$120(40+80)$$1000(600+400)$$+8000(7000+1000)$$\frac{9134}{}$7648+14869134111	Representing problems Conditional knowledge
Known facts	Derive and use addition $67=100$	and subtraction facts	$100 \text {, e.g., } 33+$	Derive and use add e.g., $330+670=100$	d subtraction facts	multiples of 10) to 1000 ,

7 | Page

Essential knowledge	Add single digit bridging through boundaries	Add multiples of 10,100	Fluency of 2 digit + 2 digit	Add multiples of 10,100 and
	Partition second number to add	Pairs of 100 (complements of $100)$	Partition second number to add	Decimal pairs of 10 and I
	Use near doubles to add	Add near multiples of 10 and 100 by rounding and adjusting	Use near doubles to add	Adjust both numbers before
adding				

Year		5	6	
Layers of vocabulary Appendix la Beck's Tiers of Vocabulary Appendix lb: Vocabulary book	Basic to subject specific (Beck's Tiers): add, addition, more, plus, increase sum, total, altogether score double, near double how many more to make. .? Instructional vocabulary: put, place arrange, rearrange change, change over split, separate NFER Arithmetic		Basic to subject specific (Beck's Tiers): add, addition, more, plus, increase sum, total, altogether score double, near double how many more to make..? Instructional vocabulary: put, place arrange, rearrange change, change over adjusting, adjust split, separate carry on, continue, repeat what comes next? predict describe the pattern, describe the rule find, find all, find different investigate NFER Arithmetic	
NC 2014	Add and subtract who using formal written Solve addition and subtr deciding which operations	numbers with more than 4 digits, including ods (columnar addition and subtraction). ction multi-step problems in contexts, and methods to use and why.	Solve problems involving add	d division.
Developing Conceptual/ Procedural Understanding	Columnar addition Include calculations involving more than 2 numbers and carrying figures >1.	Representing problems Procedural knowledge	Columnar addition Include calculations with up to 3 'empty columns'. $128.7+3.014$	Representing problems Conditional knowledge

Subtraction

Reception: ELG 2021

- Have an understanding of number to 10 , linking names of numbers, numerals, their value, and their position in the counting order

EYFS	- Subitise (recognise quantities without counting) up to 5. - Automatically recall number bonds for numbers 0-5 and for 10 , including corresponding partitioning facts. - Automatically recall double facts up 5+5 - Compare sets of objects up to 10 in different contexts, considering size and difference. - Explore patterns of numbers within numbers up to 10 , including evens and odds.	
Year	\|	2
Layers of vocabulary Appendix la Beck's Tiers of Vocabulary Appendix lb: Vocabulary book	Basic to subject specific (Beck's Tiers): take away, distance between, difference between, less than. How many more? How much greater? How many fewer? how much more is. .? - subtract, take (away), minus, leave, how many are left/left over? how many have gone? one less, two less, ten less... how many fewer is. . . than. . ? how much less is. . ? difference between half, halve $=$ equals, sign, is the same as Instructional vocabulary: start from, start with, start at look at point, to show	Basic to subject specific (Beck's Tiers): subtract, subtraction, take (away), minus leave, how many are left/left over? one less, two less... ten less... one hundred less how many fewer is... than. .? how much less is. . ? difference between half, halve = equals, sign, is the same as tens boundary difference, partition, rearrange, inverse, place value Instructional vocabulary: tell me, describe, name, pick out, discuss, talk about, explain, explain your method, explain how you got your answer, give an example of. show how you...
NC 2014	Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs.	Using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods
	Concrete, pictorial, abstract	Concrete, pictorial, abstract

12 | Page

13 | Page

Year	3			4		
Layers of vocabulary Appendix la Beck's Tiers of Vocabulary Appendix lb: Vocabulary book	Basic to subject specific (Beck's Tiers): subtract, subtraction, take (away), minus leave, how many are left/left over? one less, two less... ten less... one hundred less how many fewer is... than. .? how much less is. . ? difference between half, halve = equals, sign, is the same as tens boundary, hundreds boundary exchange, carried digits Instructional vocabulary: explain your method explain how you got your answer give an example of... show how you... show your working NFER Arithmetic			Basic to subject specific (Beck's Tiers): subtract, subtraction, take (away), minus, decrease leave, how many are left/left over? difference between half, halve how many more/fewer is.. than.. ? how much more/less is. . ? equals, sign, is the same as tens boundary, hundreds boundary, inverse exchange, carried digits Instructional vocabulary: calculate, work out, solve investigate, question answer check NFER Arithmetic		
NC 2014	Add and subtract num written methods of colum significant digit is alwo exchange is needed.	ers with up to 3 digits, nnar addition and sub dealt with first to	using formal action. Least blish if the	Add and subtract numbers of columnar addition an subtraction two-step problem to use and why.	with up to subtraction ns in contexts,	ng the formal written method priate. Solve addition and which operations and methods
Developing declarative, procedural, and	Subtract mentally pairs of multiples of 100 using known facts	Start with least significant digit decomposition $81=80$	Columnar subtraction	Subtract mentally pairs of multiples of 1000 using known facts	Columnar subtraction 2344-187	Representing problems Check the answer to the following calculations using

14 | Page

15 | Page

16 | Page

Year	5	6
Layers of vocabulary Appendix $2 a$ Beck's Tiers of Vocabulary Appendix 2b: Vocabulary book	Basic to subject specific (Beck's Tiers): subtract, subtraction, take (away), minus, leave, how many are left/left over? ten less... one hundred less how many fewer is... than. . ? how much less is. . ? difference between half, halve = equals, sign, is the same as tens boundary, hundreds boundary, inverse, units boundary, tenths boundary exchange, carried digits Instructional vocabulary: put, place arrange, rearrange change, change over adjusting, adjust split, separate	Basic to subject specific (Beck's Tiers): subtract, subtraction, take (away), minus, decrease leave, how many are left/left over? difference between half, halve how many more/fewer is. than.. ? how much more/less is. . ? equals, sign, is the same as tens boundary, hundreds boundary, units boundary, tenths boundary, inverse Instructional vocabulary: put, place arrange, rearrange change, change over adjusting, adjust split, separate carry on, continue, repeat what comes next? predict describe the pattern, describe the rule

	NFER Arithmetic	find, find all, find different investigate NFER Arithmetic	
NC 2014	Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction). Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.	Solve problems involving addition,	action, multiplication and division.
Developing declarative, procedural, and conditional knowledge		Columnar subtraction Include calculations with up to 3 'empty columns'. 128.7-3.014	Representing problems Katie was given the calculation below $47326-1900=$ She said " 1 will just take off 2000 then subtract another 100 so my answer is 45126 ." Is she correct? Would you use her method? Explain your answer

				2,400			
				450	450	?	
				Condtional knowledge			
				14	$\overline{=}=5,776-855$		
Known facts	Derive and use addition and subtraction facts to 10 and I, e.g. 3.3+ $6.7=10$ leads to $10-3.3=6.7$ and $0.33+0.67=\mid$ so $\mid-0.67$ $=0.33$		All the KS2 required facts				
Essential knowledge	Fluency of 2 digit - 2 digit including with decimals	Subtract multiples of 10 , 100,1000 and tenths	Fluency of 2 digit - 2 digit including with decimals		Subtract multiples of 10 , 100, 1000, tenths and hundredths		
	Partition second number to subtract	Use number facts, bridging and place value	Partition second number to subtract		Use number facts, bridging and place value		
	Adjust numbers to subtract	Difference between	Adjust numbers to subtract		Difference between		

Multiplication

EYFS \quad Reception: ELG 202I

- Have an understanding of number to 10 , linking names of numbers, numerals, their value, and their position in the counting order
- Subitise (recognise quantities without counting) up to 5 .
- Automatically recall number bonds for numbers 0-5 and for 10 , including corresponding partitioning facts.
- Automatically recall double facts up 5+5
- Compare sets of objects up to 10 in different contexts, considering size and difference

- Explore patterns of numbers within numbers up to 10 , including evens and odds			
Year			2
Layers of vocabulary Appendix la Beck's Tiers of Vocabulary Appendix lb: Vocabulary book	Basic to subject specific (Beck's Tiers): count in ones, twos... tens... array, groups of, equal groups odd, even Instructional vocabulary: carry on, continue repeat what comes next? find, choose, collect use, make, build tell me, describe, pick out, talk about, explain, show me, read, write, record	Basic to subject specific (Beck's Tiers): lots of, groups of x, times, multiply, multip ten times... times as (big, long, wide... and double, halve share, share equally Instructional vocabulary: carry on, continue, repeat, what comes nex rule find, find all, find different, investigate	iplied by multiple of once, twice, three times. d so on) repeated addition array row, column xt? predict describe the pattern describe the
NC 2014	Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.	Calculate mathematical statements for mul multiplication tables and write them using (=) signs.	ultiplication and division within the the multiplication (x), division (\div) and equals
	Concrete, pictorial, abstract	Concrete, pictorial, abstract	
Developing declarative, procedural, and conditional knowledge	Arrays (rectangular arrangements to show equal groups)	Repeated addition and skip counting	Commutativity

				6. Write a story to go with this equation. $6 \times 10=60$ 7. Complete the calculations. $7 \times 5=$ \square $10 \times 4=$ \square
Known facts	Count in multiples of twos, fives and tens.		Recall and use x and \div facts for the 2,5 and $10 \times$ tables, including recognising odd and even numbers.	
Essential Knowledge	Count in 2 s	Doubles up to 10	$2 \times$ table	Doubles up to 20
	Count in 10s	Double multiples of 10	$10 \times$ table	Doubles of multiples of 5
	Count in 5s	Count in 2s, 5 s and IO s	5 x table	Count in 3s

Year	3	4
Layers of vocabulary Appendix la Beck's Tiers of Vocabulary Appendix lb: Vocabulary book	Basic to subject specific (Beck's Tiers): lots of, groups of x, times, multiply, multiplication, multiplied by multiple of, product once, twice, three times... ten times... times as (big, long, wide... and so on) repeated addition array row, column double, halve share, share equally one each, two each, three each... Instructional vocabulary: carry on, continue repeat what comes next? predict describe the pattern, describe the rule find, find all, find different, investigate	Basic to subject specific (Beck's Tiers): lots of, groups of times, multiply, multiplication, multiplied by multiple of, product once, twice, three times... ten times. . . times as (big, long, wide... and so on) repeated addition array row, column double, halve, factor, multiple Instructional vocabulary: carry on, continue, repeat what comes next? predict describe the pattern, describe the rule pattern, puzzle, calculate, calculation, mental calculation, method, jotting, answer right, correct, wrong what could we try next? how did you work it out? number sentence sign, operation, symbol, equation

	choose, decide, collect	
NC 2OI4	Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including 2 digit numbers times I digit numbers progressing to formal written methods.	Multiply 2 digit and 3 digit numbers by a I digit number using formal written layout. Solve problems involving multiplying and adding.

Developing declarative, procedural, conditional knowledge	Building tables For example, build tables using counting stick- forwards and backwards with doubling and halving Firin in wirim Using known facts If $3 \times 2=6$, then $30 \times 2=60,60 \div 3$ $=20$ and $30=60 \div 2$ Associativity $\begin{aligned} & (2 \times 3) \times 4=2 \times(3 \\ & \times 4) \end{aligned}$	Partitioning strategy to double Double 35 Place value materials to represent calculations Partitioning Informal recording of partitioned numbers $\begin{aligned} & 15 \times 5=75 \\ & 10 \times 5=50 \\ & 5 \times 5=25 \end{aligned}$ $27 \times 3=81$ $\begin{aligned} 20 \times 3 & =60 \\ 7 \times 3 & =21 \end{aligned}$	Grid method$\begin{aligned} 23 \times 8 & = \\ 20 \times 8 & =160 \\ 3 \times 8 & =24 \\ 23 \times 8 & =184 \end{aligned}$$\times$ 20 3 8 Short multiplication Expanded $\begin{aligned} & 23 \\ & \times \quad 8 \\ & 24(8 \times 3) \\ & 160(8 \times 20) \end{aligned}$ 184 leading to compact $\begin{array}{r} 23 \\ \times \quad 8 \\ \hline \end{array}$	Building tables For example, build tables using counting stickforwards and backwards with doubling and halving Using known facts If $2 \times 3=6$ then 200 $\times 3=600$ and $600 \div 3$ $=200$ Distributivity $\begin{aligned} & 3 \times(2+4)=3 \times 2+ \\ & 3 \times 4 \end{aligned}$ So the ' 3 ' can be 'distributed' across the ' $2+4$ ' into 3 times 2 and 3 times 4 \qquad $=\square_{3 \times 2}$ $422+304$ $\square Q_{0}$ leading to $\begin{aligned} & 13 \times 4=10 \times 4+3 \times 4 \\ & =52 \end{aligned}$	Place value materials to represent calculations Grid method (if needed for conceptual understanding) $\begin{aligned} & 346 \times 9 \\ & \begin{array}{l} \times \times 30040 \\ \hline 9 \\ \hline 9 \end{array} \\ & \hline \end{aligned}$ Short multiplication Expanded $\begin{aligned} & 346 \\ & \times \quad 9 \\ & \hline 54(9 \times 6) \\ & 360(9 \times 40) \\ & 2700(9 \times 300) \\ & 3114 \end{aligned}$ leading to compact 346	Representing problems Conditional Knowledge Multiply a number by itself and then make one factor one more and the other one less. What do you notice? Does this always happen? $\begin{array}{lc} \operatorname{Eg} 4 \times 4=16 & 6 \times 6= \\ 36 \\ 5 \times 3=15 & 7 \times 5=35 \end{array}$ Try out more examples to prove your thinking. Place $<,>$, or $=$ in these number sentences to make them correct: 50×4 - 4×50 4×50 - 40×5 $200 \times 5 \square 3 \times 300$

		" 20 multiplied by 3 equals 60 and 7 multiplied by 3 equals 21.60 add 21 equals $81 . "$	184 Representing problems A group of aliens live on Planet Xert. Tinions have three legs, Quinions have four legs. The group has 22 legs altogether. How many Tinions and Quinions might there be? Is there more than one solution?		$\begin{gathered} x 99 \\ \hline 311_{4} \\ 45 \end{gathered}$		
Known facts	Recall and use x and \div facts for the 3, 4 and $8 \times$ tables			Recall x and \div facts for x tables up to 12×12.			
Essential knowledge	Review $2 x, 5 x$ and $10 x$	Double 2 digit numbers		$4 x$ and $8 x$ tables		$10 \times$ bigger, $100 \times$ bigger	
			3 x table	$3 x, 6 x$ and $12 x$ tables			e larger numbers and decimals
	$8 \times \text { table }$	6 x table		$3 x$ and $9 x$ tables		11 x and 7x tables	

Year	5	6
Layers of vocabulary Appendix la Beck's Tiers of Vocabulary Appendix lb: Vocabulary book	Basic to subject specific (Beck's Tiers): lots of, groups of times, multiply, multiplication, multiplied by multiple of, product once, twice, three times... ten times... times as (big, long, wide... and so on) repeated addition array row, column double, halve share, share equally factor, multiple, prime, composite Instructional vocabulary: carry on, continue, repeat what comes next? predict describe the pattern, describe the rule find, find all, find different investigate NFER Arithmetic	Basic to subject specific (Beck's Tiers): lots of, groups of times, multiply, multiplication, multiplied by multiple of, product once, twice, three times... ten times... times as (big, long, wide... and so on) repeated addition array row, column double, halve share, share equally factor, multiple, prime, composite Instructional vocabulary: carry on, continue, repeat what comes next? predict describe the pattern, describe the rule find, find all, find different investigate NFER Arithmetic
NC 2014	Multiply numbers up to 4 digits by a 1 or 2 digit number using a formal written method, including long multiplication for 2 digit numbers Solve problems involving multiplication and division including using knowledge of factors and multiples, squares and cubes Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	Multiply multi-digit numbers up to 4 digits by a 2 digit whole number using the formal written method of long multiplication. Solve problems involving addition, subtraction, multiplication and division.

	Solve problems involving multiplication and division including scaling by simple fractions and problems involving simple rates				
Developing declarative, procedural, conditional knowledge	Building tables For example, apply tables knowledge to multiples of 10 , 100 and 1000 using counting stick- forwards and backwards with doubling and halving. Using known facts If $2 \times 3=6$ then $2000 \times 3=6000$ and $200 \times 30=6000$ Place value materials to represent calculations	Grid method (if needed for conceptual understanding) 28×27 Addition to be done mentally or across followed by column addition Long multiplication Expanded	leading to compact " Place a zero to hold the ones, as everything is ten times bigger." Extend to $\mathrm{HTO} \times \mathrm{TO}$ or ThHTO x TO as appropriate Representing problems	Building tables For example, apply tables knowledge to decimals using counting stick- forwards and backwards with doubling and halving. Using known facts If $2 \times 3=6$ then $0.2 \times 3=0.6$ and $0.02 \times$ $3=0.06$ Long multiplication Use expanded method first if needed to build conceptual understanding 5172 $\begin{array}{r}\times \quad 27 \\ \hline\end{array}$ 36204 \| 51 103440 । 139644	If place value is secure, use grid method for decimal multiplication 0.75×6 $\begin{aligned} & 0.7 \times 6=4.2 \\ & 0.05 \times 6=0.3 \\ & 0.75 \times 6=4.5 \end{aligned}$ Make explicit links between decimals and money Representing problems and conditional knowledge Amy is given the calculation 5413×600. She says "I can do this without a written method." Write down the mental steps you think Amy could do.

27 | Page

	Short multiplication Use expanded method first if needed to build conceptual understanding $\begin{array}{r} 4346 \\ \times \quad 8 \\ \hline 34768 \\ \hline 234 \end{array}$	40 cupcakes cost £3.60, how much do 20 cupcakes cost? How much do 80 cupcakes cost? How much do 10 cupcakes cost?	
Known facts	Know and use the and composite (n Recall prime num Recognise and use squared (${ }^{2}$) and	cabulary of prime numbers, prime factors prime) numbers up to 19 uare and cube numbers and the notation for $\left({ }^{3}\right)$	Identify common factors, common multiples and prime numbers

Division

Reception: ELG 2021

- Have an understanding of number to 10 , linking names of numbers, numerals, their value, and their position in the counting order
- Subitise (recognise quantities without counting) up to 5 .
- Automatically recall number bonds for numbers 0-5 and for 10 , including corresponding partitioning facts.
- Automatically recall double facts up $5+5$

	- Compare sets of objects up to 10 in different contexts, considering size and difference. - Explore patterns of numbers within numbers up to $I O$, including evens and odds.	
Year	1	2
Layers of vocabulary Appendix la Beck's Tiers of Vocabulary Appendix lb: Vocabulary book	Basic to subject specific (Beck's Tiers): count in ones, twos... tens... share, groups of, equal groups, odd, even Instructional vocabulary: count out, share out, left, left over.	Basic to subject specific (Beck's Tiers): share, share equally one each, two each, three each... group in pairs, threes... tens equal groups of \div, divide, divided by, divided into left, left over. Instructional vocabulary: tell me, describe, name, pick out, discuss, talk about, explain, explain your method, explain how you got your answer, give an example of... show how you
NC 2014	solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations, and arrays with the support of the teacher.	Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals ($=$) signs.

	Concrete, pictorial, abstract		Concrete, pictorial, abstract	
Developing declarative, procedural, conditional knowledge	Grouping/Sharing models Using practical contexts and cross-curricular links (PE) such as socks and shoes; animals in the ark to get into groups. Sharing models such as sharing pieces of fruit. Sharing into equal groups 6 frogs shared equally between 2 lily pads gives 3 frogs on each lily pad or Grouping in equal groups 6 frogs grouped in 2 s need 3 lily pads to sit on How many twos?	Arrays (rectangular arrangements to show equal groups) Decision making How many cars can you make if you have 8 wheels? (0) (0) (1) (0) How many different ways can you arrange 12 buttons in equal groups?	Grouping/Sharing models Introduce the \div symbol 15 frogs shared equally between three lily pads $15 \div 3=5$ or 15 frogs grouped in 5 s need 3 lily pads to sit on $15 \div 5=3$ $15 \div 3=5$ groups of 3 (grouping) $20 \div 2=10$ There are 7 cakes and 2 children. How many cakes will they get each? (Leftovers/remainders introduced) $7 \div 2=3 r 1$	Arrays representing the dividend $10 \div 2=5$ \square and $10 \div 5=$ 2 Repeated addition (to reach a given target) There are 20 sweets in a bag. How many children can have 5 each? Repeated subtraction (from a given quantity) Links to tables Use language of division linked to tables using counting stick Representing problems

Year	3	4
Layers of vocabulary Appendix la Beck's Tiers of Vocabulary Appendix lb: Vocabulary book	Basic to subject specific (Beck's Tiers): share, share equally one each, two each, three each... group in pairs, threes... tens equal groups of \div, divide, division, divided by, divided into left, left over, remainder, dividend, divisor Instructional vocabulary: calculate, work out, solve, investigate question, answer, check	Basic to subject specific (Beck's Tiers): share, share equally one each, two each, three each... group in pairs, threes... tens equal groups of \div, divide, division, divided by, divided into left, left over, remainder, dividend, divisor Instructional vocabulary: calculate, work out, solve, investigate, question, answer, check
NC 2014	Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including 2 digit numbers times I digit numbers progressing to formal written methods.	Practise to become fluent in the formal written method of short division with exact answers.

Developing declarative, procedural, conditional knowledge	Links to tables For example, use language of division linked to tables using counting stick Using known facts If $3 \times 2=6$, then $30 \times 2=$ $60,60 \div 3=20$ and $30=60 \div 2$ Partitioning strategy to halve Halve 68 Rearranging the dividend to find multiples of the divisor. $48 \div 3=$ 'What do I know about the $3 x$ tables?' $\begin{aligned} & \text { "I know } 3 \times 10=30 \text { and } 3 \times 6 \\ & =18 . " \end{aligned}$	Place value materials to represent calculations Introduce the 'bus stop' bracket and vinculum notation. Short division $(72=60+12)$ $72 \div 3=$ $\begin{gathered} 24 \\ 3 \longdiv { 7 ^ { 1 } 2 } \end{gathered}$ '72 divided by 3. 7 tens shared equally between 3 is 2 with a remainder of 1 ten. Exchange the I ten for 10 ones. I now have 12 ones which shared equally between 3 is 4 . The answer is 24 ." Representing problems and conditional knowledge	Links to tables For example, use language of division linked to tables using counting stick Using known facts If $2 \times 3=6$ then $200 \times 3=600$ and $600 \div 3=200$ Rearranging the dividend to find multiples of the divisor. $69 \div 3=$ 'What do I know about the 3 x tables?' "I know $3 \times 10=30$ and $3 \times 3=$ 9." $69 \div 3=23$	Place value materials to represent calculations Short division $372 \div 6=$ 6 2 ' 372 divided by 6. 3 hundreds cannot be shared equally between 6, so exchange the hundreds for 30 tens. I now have 37 tens which shared equally between 6 is 6 with a remainder of I ten. Exchange the ten for 10 units. I now have 12 ones which shared equally between 6 is 2 . The answer is 62." Representing problems and conditional knowledge

	$48 \div 3=16$	Andy says, 'I can use my three times table to work out $180 \div 3^{\prime}$. Explain what Andy could do to work out this calculation.	$\begin{array}{lc} \hline 24 r 1 \\ 3 & 7^{1} 3 \end{array}$ Remainders can never be greater than the divisor.		\square $=240 \div 8$ $840 \div 5=$ hich calculations give 2 digit quotients? $60 \div 6{ }^{36 \div 3} 80 \div 5$
Known facts	Recall and use \times and \div facts for the 3, 4 and $8 \times$ tables		Recall \times and \div facts for \times tables up to 12×12.		
Essential knowledge	Review division facts $(2 x, 5 x$ and $10 \times$ tables)	Halve 2 digit numbers	Division facts ($4 x$ and 8x tables)		10x smaller
	Division facts ($4 \times$ table)	Division facts ($3 \times$ table)	Division facts ($3 \mathrm{x}, 6 \mathrm{x}$ and 12 x tables)		Halve larger numbers and decimals
	Division facts (8x table)	Division facts (6xtable)	Division facts (3 x and $9 \times$ tables)		Division facts (II x and $7 x$ tables)
Tests of divisibility	KSI: 2, 5, 10	Any number with a digit sum of a multiple of 3 , will divide equally by 3	Any number with a digit sum of a multiple of 3 , will divide equally by 3 KSI: 2, 5, 10		Any number with a digit sum of a multiple of 3 and is even will divide equally by 6

Year	5	6
Layers of vocabulary Appendix la Beck's Tiers of Vocabulary Appendix lb: Vocabulary book	Basic to subject specific (Beck's Tiers): equal groups of divide, division, divided by, divided into remainder factor, quotient, divisible by inverse Instructional vocabulary: calculate, work out, solve, investigate question, answer, check same, different missing number/s number facts, number pairs, number bonds greatest value, least value NFER Arithmetic	Basic to subject specific (Beck's Tiers): equal groups of divide, division, divided by, divided into remainder factor, quotient, divisible by inverse, remainders as fractions or decimals Instructional vocabulary: calculate, work out, solve, investigate question, answer, check same, different missing number/s number facts, number pairs, number bonds greatest value, least value NFER Arithmetic
NC 2014	Divide numbers up to 4 digits by a \mid digit number using the formal written method of short division and interpret remainders appropriately for the context (as remainders, as fractions, as decimals or by rounding, e.g. $98 \div 4$ $=\frac{9}{4}=24 r 2=24 \square=24.5 \approx 25$). Solve problems involving multiplication and division including using knowledge of factors and multiples, squares and cubes. Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign. Solve problems involving multiplication and division including scaling by simple fractions and problems involving simple rates.	Divide numbers up to 4 digits by a 2 digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate to the context. Divide numbers up to 4 digits by a 2 digit number using the formal written method of short division where appropriate, interpreting remainders according to the context. Solve problems involving addition, subtraction, multiplication and division.

Tests of divisibility	Tests for 2,3,5,6 \&10	Any number with a digit sum of a multiple of 9 will divide equally by 9	Tests for 2,3,5,6, 9 \& 10	Any number where the last two digits are divisble by 4 , will all divide by 4

Standard written method ~ KSI and KS2

	Addition	Subtraction	Multiplication	Division
Reception	$1+5=$ $1+6=$ 98 88 8 8	$3-1=$ \square $2-1=$ \square $8-1=$ \square $4-1=$ \square 	$\underset{0}{123456}$	
Year 1	\square			203 030

Year 2	$\begin{gathered} 59 \\ +43+ \\ \hline 102 \end{gathered}$	$\begin{aligned} & { }^{6} 73 \\ & 49 \\ & \hline 24 \end{aligned}$	$8 \times 5=40$	$35 \div 5=7$
Year 3	$\begin{aligned} & 523 \\ & 393+ \\ & 916 \end{aligned}$	$\begin{aligned} & { }^{4} 523 \\ & \frac{393-}{} \\ & \hline 130 \end{aligned}$	$\begin{aligned} & 59 \\ & \underline{6 x} \\ & 54(6 \times 9) \\ & \underline{300}(6 \times 50) \\ & 354 \end{aligned}$	$\begin{array}{r} 4 \\ 8 \longdiv { 3 2 } \end{array}$
Year 4	$\begin{aligned} & 1,312 \\ & 3,094+ \\ & 4,406 \end{aligned}$	$\begin{aligned} & 6,273 \\ & 1,093- \\ & 5,180 \end{aligned}$	$\begin{gathered} 159 \\ \quad 16 x \\ \hline 954 \\ 11,590+ \\ \hline 2,544 \end{gathered}$	$\begin{array}{r} 135 \\ 7 \longdiv { 9 4 5 } \end{array}$

Year 5	$\begin{aligned} & 13,123 \\ & 30,943+ \\ & 44,066 \end{aligned}$	$\begin{aligned} & 6^{1} 2^{1}, 743 \\ & 10,923- \\ & 51,820 \end{aligned}$	2259 $6 x$ 54 300 1,200 $12,000+$ 13,554	$6 \longdiv { 1 6 7 9 } \text { r } 5$
Year 6	$\begin{aligned} & 613,123 \\ & 1310,943+ \\ & 744,066 \end{aligned}$	6112,1743 $\begin{aligned} & 100,923- \\ & 511,820 \end{aligned}$	$\begin{array}{r} 2259 \\ 4 \\ 6 \times 13,554 \\ 901,360+ \\ 103,914 \end{array}$	

Concrete		Pictorial	Continuous Provision
Enjoys filling and emptying containers. Recognises that two objects have the same shape.			
Full, half full.	Half of the fruit.	Matching the other half pictures and jig saws.	Sharing fruit at snack time. Having half a glass of juice. Cut the toast in half, and half again.
Responds to and uses language of position and direction. Composes and decomposes shapes, learning which shapes combine to make other shapes.			

Progression in Fractions EYFS

Progression in Fractions KSI

44 | Page

Progression in Fractions LKS2

Objective 2: Count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten

$1-102$		3.
		0.3
0.01	0.02	0.03 d

Objective 5: Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number

Progression in Fractions UKS2

61 | Page

